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The fractional Laplacian
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Fractional powers of matrices

Any linear transformation L : Rn → Rn is given by multiplication by a matrix:

L(x) = Ax x ∈ Rn

Let A be symmetric and positive definite. Then

A = PTDP = PT diag(λ1, . . . , λn)P

Question. What is A1/2? It must be that A1/2A1/2 = A

Natural definition.

A1/2 = PTD1/2P = PT diag(λ
1/2
1 , . . . , λ1/2

n )P

Indeed,

A1/2A1/2 = PTD1/2PPTD1/2P = PTD1/2D1/2P = PTDP = A

More generally, for s > 0,

As = PT diag(λs1, . . . , λ
s
n)P

Obviously: A1 = A, A0 = Id , As1As2 = As1+s2 .
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Exponential of a matrix

Given A = PTDP and t > 0 we define the exponential matrix

e−tA =
∞∑
k=0

(−tA)k

k!

= PT

[ ∞∑
k=0

(−tD)k

k!

]
P

= PT e−tDP

Here
e−tD = diag(e−tλ1 , . . . , e−tλn)

This exponential solves a “heat equation”:{
∂t(e

−tA) = −A(e−tA) for all t > 0

e−tA
∣∣
t=0

= Id
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Pablo Raúl Stinga (Iowa State University) Nonlocal fractional Monge–Ampère equations February 24 2021 4 / 26



Exponential of a matrix

Given A = PTDP and t > 0 we define the exponential matrix

e−tA =
∞∑
k=0

(−tA)k

k!

= PT

[ ∞∑
k=0

(−tD)k

k!

]
P

= PT e−tDP

Here
e−tD = diag(e−tλ1 , . . . , e−tλn)

This exponential solves a “heat equation”:{
∂t(e

−tA) = −A(e−tA) for all t > 0

e−tA
∣∣
t=0

= Id
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Fractional matrices and exponentials

It is easy to verify that for any λ > 0 and 0 < s < 1

λs = cs

∫ ∞
0

(
e−tλ − 1

) dt

t1+s

Thus,

As = PT diag(λs1, . . . , λ
s
n)P

= csP
T diag

[ ∫ ∞
0

(e−tλ1 − 1)
dt

t1+s
, . . . ,

∫ ∞
0

(e−tλn − 1)
dt

t1+s

]
P

= cs

∫ ∞
0

[
PT diag(e−tλ1 − 1, . . . , e−tλn − 1)P

] dt

t1+s

= cs

∫ ∞
0

[
PT diag(e−tλ1 , . . . , e−tλn)P − PT (Id)P

] dt

t1+s

= cs

∫ ∞
0

[
e−tA − Id

] dt

t1+s
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Inverse matrices and exponentials

Clearly, for λ > 0,

λ−1 =

∫ ∞
0

e−tλ dt

Thus,

A−1 = PT diag(λ−1
1 , . . . , λ−1

n )P

= PT diag

[ ∫ ∞
0

e−tλ1 dt, . . . ,

∫ ∞
0

e−tλn dt

]
P

=

∫ ∞
0

[
PT diag(e−tλ1 , . . . , e−tλn)P

]
dt

=

∫ ∞
0

e−tA dt

I Using e−tA we can also compute the matrices A−s , s > 0.
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Fourier transform (1822)

Fourier transform of u = u(x):

F(u)(ξ) =
1

(2π)n/2

∫
Rn

u(x)e−iξ·x dx

Inverse Fourier transform of v = v(ξ):

F−1(v)(x) =
1

(2π)n/2

∫
Rn

v(ξ)e ix·ξ dξ

I Property 1. Inversion Theorem: F−1(F(u)) = u

F
(
∂u

∂xj

)
= (iξj)F(u) ←→ F−1

(
(iξj)F(u)

)
=
∂u

∂xj

I Property 2. Derivatives correspond to multiplication by polynomials:

Dku ←→ (iξ)kF(u)
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Fractional Laplacian

Let Lu = −∆u = −
n∑

i=1

∂2u

∂x2
i

.

Then P is replaced by the Fourier transform:

u 7−→ Fu

Multiplication by D corresponds to multiplication by |ξ|2:

−∆u 7−→ F(−∆u) = |ξ|2Fu

Finally, PT corresponds to the inverse Fourier transform:

−∆u = F−1
(
|ξ|2Fu

)
(this is completely parallel to: A = PTDP).

The linear algebra definition of fractional Laplacian, for s > 0, is

(−∆)su = F−1
(
|ξ|2sFu

)
(this is completely parallel to: As = PTDsP).

Obviously: (−∆)1u = −∆u, (−∆)0u = u, (−∆)s1 [(−∆)s2u] = (−∆)s1+s2u

Pablo Raúl Stinga (Iowa State University) Nonlocal fractional Monge–Ampère equations February 24 2021 8 / 26



Fractional Laplacian

Let Lu = −∆u = −
n∑

i=1

∂2u

∂x2
i

. Then P is replaced by the Fourier transform:

u 7−→ Fu

Multiplication by D corresponds to multiplication by |ξ|2:

−∆u 7−→ F(−∆u) = |ξ|2Fu

Finally, PT corresponds to the inverse Fourier transform:

−∆u = F−1
(
|ξ|2Fu

)
(this is completely parallel to: A = PTDP).

The linear algebra definition of fractional Laplacian, for s > 0, is

(−∆)su = F−1
(
|ξ|2sFu

)
(this is completely parallel to: As = PTDsP).

Obviously: (−∆)1u = −∆u, (−∆)0u = u, (−∆)s1 [(−∆)s2u] = (−∆)s1+s2u
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−∆u 7−→ F(−∆u) = |ξ|2Fu

Finally, PT corresponds to the inverse Fourier transform:

−∆u = F−1
(
|ξ|2Fu

)
(this is completely parallel to: A = PTDP).

The linear algebra definition of fractional Laplacian, for s > 0, is

(−∆)su = F−1
(
|ξ|2sFu

)

(this is completely parallel to: As = PTDsP).

Obviously: (−∆)1u = −∆u, (−∆)0u = u, (−∆)s1 [(−∆)s2u] = (−∆)s1+s2u
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Exponential of the Laplacian

Given Lu = −∆u and t > 0 we define the exponential operator

e−t(−∆)u = et∆u

= F−1[e−t|ξ|
2

(Fu)]

Then et∆u(x) solves the heat equation{
∂t(e

t∆u) = ∆(et∆u) for all t > 0

et∆u
∣∣
t=0

= u

Moreover, the exponential is given by convolution with the heat kernel

et∆u(x) =

∫
Rn

e−|x−y |
2/(4t)

(4πt)n/2
u(y) dy
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Fractional Laplacian and exponential

In this case we use: |ξ|2s = cs

∫ ∞
0

(
e−t|ξ|

2

− 1
) dt

t1+s
(0 < s < 1)

Then

(−∆)su = F−1
(
|ξ|2sFu

)
= F−1

[(
cs

∫ ∞
0

(
e−t|ξ|

2

− 1
) dt

t1+s

)
Fu
]

= cs

∫ ∞
0

(
et∆u − u

) dt

t1+s

Recall the heat kernel formula: et∆u(x) =

∫
Rn

e−|x−y |
2/(4t)

(4πt)n/2
u(y) dy . It follows that

(−∆)su(x) = c

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy

I Nonlocal - Fractional order 0 < 2s < 2 - Singular kernel - Regularity

I See S., User’s guide to the fractional Laplacian and the method of semigroups,

Handbook of Fractional Calculus with Applications, Vol. 2, De Gruyter, 2019.

Pablo Raúl Stinga (Iowa State University) Nonlocal fractional Monge–Ampère equations February 24 2021 10 / 26



Fractional Laplacian and exponential

In this case we use: |ξ|2s = cs

∫ ∞
0

(
e−t|ξ|

2

− 1
) dt

t1+s
(0 < s < 1)

Then

(−∆)su = F−1
(
|ξ|2sFu

)
= F−1

[(
cs

∫ ∞
0

(
e−t|ξ|

2

− 1
) dt

t1+s

)
Fu
]

= cs

∫ ∞
0

(
et∆u − u

) dt

t1+s

Recall the heat kernel formula: et∆u(x) =

∫
Rn

e−|x−y |
2/(4t)

(4πt)n/2
u(y) dy . It follows that

(−∆)su(x) = c

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy

I Nonlocal - Fractional order 0 < 2s < 2 - Singular kernel - Regularity

I See S., User’s guide to the fractional Laplacian and the method of semigroups,

Handbook of Fractional Calculus with Applications, Vol. 2, De Gruyter, 2019.
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Random walk

Consider a one-dimensional particle that takes a step of size h > 0 either to the
left or to the right with probability 1/2.

By the Law of Total Probability,

u(x) =
1

2
u(x + h) +

1

2
u(x − h)

This is the mean value property.

After rearranging,
u(x + h) + u(x − h)− 2u(x) = 0

If we divide by h2 and take the limit as h→ 0,

u(x + h) + u(x − h)− 2u(x)

h2
→ d2

dx2
u(x) = 0

so that u is a harmonic function.
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Random jumps

A particle that jumps to any point x ± kh (not only the adjacent ones) with
probability depending on how far it jumped:

u(x) =
∑
k∈Z

u(x − kh)K (kh)

This is a nonlocal mean value property.

After rearranging, ∑
k∈Z

(
u(x)− u(x − kh)

)
K (kh) = 0

Question(s).∑
k∈Z

(
u(x)− u(x − kh)

)
K (kh)→

∫
R

u(x)− u(x − y)

|y |1+2s
dy as h→ 0

I Who is K?

I Smoothness of u?

I Rate of convergence?
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Fractional discrete Laplacian

I Ciaurri, Roncal, S., Torrea and Varona (Adv. Math. 2018)

We proved that if L = −∆h (second order differences operator) then

(−∆h)su(x) =
∑
k

(
u(x)− u(x − hk)

)
Ks(hk)

where the kernel is explicit:

Ks(hk) = cs
Γ(|k| − s)

h2sΓ(|k|+ 1 + s)

We showed, for example, that if u ∈ C 0,α and 2s < α then

‖(−∆h)su − (−∆)su‖`∞h ≤ C [u]Cαh
α−2s

We also proved approximation of continuous problems (−∆)su = f by discrete
problems (−∆h)suh = fh, under minimal regularity of f , and with explicit rates
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Nonlocal equations

In general, a nonlocal equation is an equation of the form∫
Ω

(
u(x)− u(y)

)
K (x , y) dy = f (x)

“What happens far away affects the present position instantaneously”

Feature. No derivatives of u are involved

Models.

Peridynamics: fracture.

Biology: chemotaxis, epidemics.

Social sciences: social media, spread of information.

Finance: stock prices, political decisions, natural disasters.

Image processing: digital images are discontinuous functions.
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Examples of kernels

Singular kernels. For 0 < s < 1,

K (x , y) =
c

|x − y |n+2s
for x , y ∈ Rn

Then

c

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy = (−∆)su(x)

is the fractional Laplacian.

Compact support. In peridynamics,

K (x , y) = χ|x−y |≤δF (x − y)

and δ is called the horizon.

Exponential decay. For C , c , α > 0

K (x , y) = Ce−c|x−y |
α
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The Monge–Ampère equation
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The Monge–Ampère equation and convexity

The MA equation is the fully nonlinear equation

det(D2u(x)) = f (x)

Take a directional derivative ∂e of the equation to get

trace
(
det(D2u)(D2u)−1D2(∂eu)

)
= ∂e f

Here Au(x) = det(D2u(x))(D2u(x))−1 is the matrix of cofactors of D2u(x).

If we call v = ∂eu and g = ∂e f then v solves the linearized MA equation

trace(Au(x)D2v) = g

This is an elliptic equation (meaning Au(x) > 0) as soon as

D2u(x) > 0 (convex!) and f > 0

I Elliptic MA equation and convexity go together.
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The Monge–Ampère equation and degeneracy

The MA equation is a concave function of D2u.

Claim. If u is convex and C 2 then

n[det(D2u(x))]1/n = inf
{

∆(u ◦ A)(A−1x) : A = AT > 0, det(A) = 1
}

= inf
{

trace(A2D2u(x)) : A = AT > 0, det(A) = 1
}

Proof. Arithmetic mean-geometric mean inequality:

[det(D2u)]1/n = (λ1 · · ·λn)1/n ≤ λ1 + · · ·+ λn
n

=
1

n
trace(Id2 · D2u)

The infimum is attained at A2 = [det(D2u)]1/n(D2u)−1.

MA is degenerate elliptic. In dimension n = 2, matrices of the form

A =

(
ε 0
0 1/ε

)
enter in the computation of the infimum.
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Pablo Raúl Stinga (Iowa State University) Nonlocal fractional Monge–Ampère equations February 24 2021 18 / 26



The Monge–Ampère equation and degeneracy

The MA equation is a concave function of D2u.

Claim. If u is convex and C 2 then

n[det(D2u(x))]1/n = inf
{

∆(u ◦ A)(A−1x) : A = AT > 0, det(A) = 1
}

= inf
{

trace(A2D2u(x)) : A = AT > 0, det(A) = 1
}

Proof. Arithmetic mean-geometric mean inequality:

[det(D2u)]1/n = (λ1 · · ·λn)1/n ≤ λ1 + · · ·+ λn
n

=
1

n
trace(Id2 · D2u)

The infimum is attained at A2 = [det(D2u)]1/n(D2u)−1.

MA is degenerate elliptic. In dimension n = 2, matrices of the form

A =

(
ε 0
0 1/ε

)
enter in the computation of the infimum.
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The Monge–Ampère equation and uniform ellipticity

Recall: if u is convex and C 2 then

n[det(D2u(x))]1/n = inf
{

trace(A2D2u(x)) : A = AT > 0, det(A) = 1
}

and the infimum is attained at A2 = [det(D2u)]1/n(D2u)−1.

If
0 < D2

eeu ≤ M0Id and det(D2u) =
∏
i

λi = f ≥ η0 > 0

then

λk =

∏
λi∏

i 6=k λi
≥ η0

Mn−1
0

Therefore, for some 0 < λ ≤ Λ,

λId ≤ D2u ≤ ΛId

Conclusion. The matrices A have minimum eigenvalue uniformly bounded below
away from zero and, therefore, above away from infinity: uniform ellipticity.
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Nonlocal fractional Monge–Ampère equations
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A fractional Monge–Ampère equation

Recall: if u is convex and C 2 then

n[det(D2u(x))]1/n = inf
{

∆(u ◦ A)(A−1x) : A = AT > 0, det(A) = 1
}

= inf
{

trace(A2D2u(x)) : A = AT > 0, det(A) = 1
}

For 1/2 < s < 1 and u linear at infinity, Caffarelli–Charro (2015) defined

Dsu(x) = inf
{
−(−∆)s(u ◦ A)(A−1x) : A = AT > 0, det(A) = 1}

By using the integral formula for the fractional Laplacian,

Dsu(x) = inf
A>0,det(A)=1

c

∫
Rn

u(x − y)− u(x)

|A−1y |n+2s
dy

It can be proved that

lim
s→1−

Dsu(x) = n[det(D2u(x))]1/n

I This fractional MA operator is degenerate elliptic.
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∫
Rn
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It can be proved that
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Fractional MA equation

Caffarelli and Charro considered the Dirichlet problem{
Ds ū = ū − φ in Rn

lim|x|→∞(ū − φ)(x) = 0

where φ is convex and behaves like a cone at infinity.

By comparison, ū ≥ φ.

There exists a unique viscosity solution ū that is Lipschitz and semiconcave.

Moreover, ū has the crucial property

ū > φ in Rn

Thus, ū is Lipschitz, semiconcave and

Ds ū ≥ η0 > 0 in a ball B.

Under these conditions, they proved that the equation becomes uniformly
elliptic: there exists λ > 0 such that, for x ∈ B,

Ds ū(x) = Dλs ū(x) = inf
A>λId,det(A)=1

c

∫
Rn

ū(x − y)− ū(x)

|A−1y |n+2s
dy

I The uniformly elliptic regularity theory of Caffarelli–Silvestre applies.
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A>λId,det(A)=1

c

∫
Rn
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ū(x − y)− ū(x)
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Thus, ū is Lipschitz, semiconcave and
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Obstacle problem for fractional MA equation

We consider the obstacle problem
Dsu ≥ u − φ in Rn

u ≤ ψ in Rn

Dsu = u − φ in {u < ψ}
lim|x|→∞(u − φ)(x) = 0

for an obstacle ψ such that

ψ > φ and ψ ≤ ū in some compact set.

Theorem (with Y. Jhaveri, Comm. PDE 2020)

There exists a unique viscosity solution u that is Lipschitz and semiconcave with
constants depending only on φ and ψ. Moreover

u > φ in Rn

In particular, locally, the problem becomes uniformly elliptic.
Higher regularity of u and regularity of the free boundary ∂{u < ψ}.
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Nonlocal uniformly elliptic equations

We have

Dλs u(x) = inf
A>λId,det(A)=1

c

∫
Rn

u(x − y)− u(x)

|A−1y |n+2s
dy

= − inf
A>λId,det(A)=1

(− trace(A2D2))su(x)

= −(− trace(B(x)D2))su(x) = −(−L)su(x)

Theorem (with M. Vaughan, PhD thesis 2020, arXiv preprint)

Suppose that B(x) is uniformly elliptic and Hölder continuous. If u ≥ 0 is a
classical solution to (−L)su = f in B1 then

sup
B1/2

u ≤ C
(

inf
B1/2

u + ‖f ‖L∞(B1)

)
.

Moreover, solutions to (−L)su = f are locally Hölder continuous.

I Under the semigroup setting given by Galé–Miana–S. in J. Evol. Equ. 2012,
we developed a new method of sliding paraboloids for singular/degenerate PDEs.
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Fractional linearized MA equation

Recall that v = ∂eu solves the linearized MA equation

Lv = trace(det(D2u)(D2u)−1D2v) = trace(Au(x)D2v) = g

We defined the fractional linearized MA as

(−L)sv = (− trace(Au(x)D2))sv

Theorem (with D. Maldonado, Calc. Var. PDE 2017)

Assume that u is convex and sufficiently regular. Under certain geometric
conditions, if v ≥ 0 is a classical solution to (−L)sv = f in S1, v = 0 on ∂S1, then

sup
S1/2

v ≤ C
(

inf
S1/2

v + ‖f ‖L∞(S1)

)
Moreover, solutions to (−L)sv = f are Hölder continuous with respect to the
geometry given by the convex function u.

I Under the semigroup setting given by Galé–Miana–S. in J. Evol. Equ. 2012,
we exploit the divergence and nondivergence structures of the equation.
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Thank you for your attention!
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