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Abstract

In this essay, we study fractional calculus and its application to a real-world problem: anomalous diffusion.
First, we present a review of the fundamentals of fractional calculus. Then, we analyze analytically and
numerically the anomalous diffusion equation with drift, a partial differential equation that appears in
some real-world applications related with anomalous super-dispersion. We show that the solution of
the fractional diffusion equation with drift cannot be expressed in terms of elementary functions. Our
numerical results show that the fractional term of the equation behaves as a mix of pure transport
and pure diffusion, where the quantity of transport and diffusion respectively depends on the derivative
order of the fractional term in a non-trivial way. Finally, we study the fractional Pearson equations,
which constitute a new fractional analogue to the classical Pearson equations. In this way, we introduce
fractional analogues of beta, gamma and normal distributions. Also, quasi-polynomials orthogonal with
respect to these new distributions are presented and some conjectures about their zeros are stated.
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1. Introduction

Background

Fractional calculus is an extension of normal calculus where the order of derivatives is not an integer
but a real number. Many known mathematicians have contributed to this theory over the years, among
them Liouville, Riemann, Fourier, Leibniz and Grünwald.

Probably, the first application of fractional calculus was made by N. H. Abel in 1823 when he was
studying the integral equation that arises in the formulation of the tautochrone problem. But we would
also like to mention O. Heaviside, who in 1893 used fractional differential operators together with
his famous operational calculus to study the Age of the Earth (see [24] or [26, Chapter 7]). For a
long time, the theory of fractional calculus developed only as a pure theoretical field of mathematics.
However, in the last decades, it was found that fractional derivatives and integrals provide a better
tool to understand some physical phenomena, especially when processes with memory are considered
[7]. Applications nowadays include modeling of viscoelastic and viscoplastic materials [41], chemical
processes [40], and a wide range of engineering problems.

Aims

The main aims of this essay are to understand the principles of fractional calculus as well as to introduce
new fractional analogues of some well-known results from classical analysis. Moreover, we consider some
of its application on the real-world.

Overview of the thesis

To achieve these goals, we proceed as follows. In Chapter 2, basic definitions and notations are in-
troduced. We pay special attention to those related with fractional calculus which will be used within
the essay. In particular, we introduce Riemann-Liouville and Caputo fractional derivatives, which are
considered in Chapter 3 and Chapter 4, respectively.

In Chapter 3, a real-world application of fractional calculus is analyzed in detail, namely super-dispersion
that was observed in a ground water dispersion experiment [21]. We analyze the corresponding partial
differential equation which models anomalous diffusion with drift. We study the equation analytically
and numerically by means of the Fourier transform and a numerical scheme applied to a number of test
cases, respectively.

In Chapter 4, we consider a new mathematical problem: to introduce fractional analogues of the well-
known beta, gamma and normal distributions. In doing so, we consider fractional differential equations
for which we provide analytical solutions. These new fractional analogues suggest us to introduce
weighted orthogonal quasi-polynomials. Some conjectures about the zeros of these quasi-polynomials
orthogonal with respect to the fractional analogues of the beta and gamma distribution are stated.

Finally, we conclude the work in Chapter 5 and give some recommendations and perspectives.
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2. Fractional calculus

In this chapter, we present the notation and basic definitions that are used in the essay.

2.1 Basic ideas

It is possible to introduce fractional calculus from a standard result from classical differential and integral
calculus [33, Theorem 6.18]

2.1.1 Theorem (Fundamental Theorem of Classical Calculus). Let f : [a, b] → R be a continuous
function, and let F : [a, b]→ R be defined by

F (x) =

∫ x

a
f(t)dt.

Then, F is differentiable and
F ′ = f.

This theorem provides a close relation between differential operators and integral operators. One of the
main objectives is to introduce new operators that retain this relation in a suitably generalized sense.

2.1.2 Definition. • By D, we denote the operator that maps a differentiable function onto its
derivative, i.e.

Df(x) := f ′(x).

• By Ja, we denote the operator that maps a function, assumed to be (Riemann) integrable on the
compact interval [a, b], onto its primitive centered at a, i.e.

Jaf(x) :=

∫ x

a
f(t)dt,

for a ≤ x ≤ b.

• For n ∈ N we use the symbols Dn and Jna to denote the n-fold iterates of D and Ja, respectively,
that is

D1 := D, J1
a := Ja, Dn := DDn−1, Jna := JaJ

n−1
a , n ≥ 2.

From Theorem 2.1.1 it follows that
DJaf = f,

and therefore
DnJna f = f,

for n ∈ N. Thus, Dn is the left inverse operator of the operator Jna in a suitable space of functions [6].
The generalization of this property to the case of not integer numbers is not straightforward.

Let us recall the following result [35, Eq. (2.16)] for the integral operator Jna .

2.1.3 Lemma. Let f be a Riemann integrable function on [a, b]. Then, for a < x < b and n ∈ N the
following relation holds

Jna f(x) =
1

(n− 1)!

∫ x

a
(x− t)n−1f(t)dt.

2
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Moreover, from reference [6, p. 8], we have:

2.1.4 Lemma. Let n,m ∈ N such that m > n, and let f be a function having a continuous nth
derivative on the interval [a, b]. Then,

Dnf = DmJm−na f.

2.2 Some special functions that appear in fractional calculus

In this section, a compilation of the special functions arising within the text is provided. For each
function, formal definitions and main properties are summarized. Further details can be found in the
basic references [1, 8, 9, 10, 29, 30, 35].

2.2.1 Pochhammer symbol. Let z ∈ C and n ∈ N. The Pochhammer symbol (z)n with integer order
n is defined by

(z)0 := 1, (z)n = z(z + 1) · · · (z + n− 1), n = 1, 2, . . . .

The following relations hold

(1)n = n!, (z)n = (−1)n(1− n− z)n.

2.2.2 Binomial coefficients. Let α ∈ C and n ∈ N. The binomial coefficients are defined by(
α

n

)
=

(−1)n(−α)n
n!

.

In particular, if α = m and m = 1, 2, . . . is a positive integer, we have

(
m

n

)
=


m!

n! (m− n)!
, m ≥ n ≥ 0, n = 0, 1, . . . ,m

0, 0 ≤ m < n.

The binomial coefficients can be also defined in the case of arbitrary complex β and α 6= −1,−2, . . . as(
α

β

)
=

Γ(α+ 1)

Γ(β + 1) Γ(α− β + 1)
.

2.2.3 The gamma function Γ(z). Let z ∈ C. The Euler integral of the second kind

Γ(z) =

∫ ∞
0

xz−1 exp(−x)dx, <(z) > 0,

is referred to as the gamma function, where <(z) denotes the real part of z. The following recurrence
relation can be obtained from the definition of the gamma function by integration by parts

Γ(z + 1) = z Γ(z), <(z) > 0.

Moreover,

Γ(z) =
Γ(z + n)

(z)n

is a relation between the gamma function and the Pochhammer symbol.
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Figure 2.1: Graph of the gamma function Γ(z) for z ∈ [−3, 3]. The gamma function has a pole at each
negative integer.

2.2.4 The beta function B(z, w). The Euler integral of the first kind

B(z, w) =

∫ 1

0
xz−1 (1− x)w−1dx, <(z) > 0, <(w) > 0,

is called the beta function. The following relation connects the beta function with the gamma function

B(z, w) =
Γ(z) Γ(w)

Γ(z + w)
.

2.2.5 The Gauss hypergeometric function. Let us define

2F1

(
a, b
c

z

)
=
∞∑
n=0

(a)n (b)n
(c)n

zn

n!
.

The parameters a, b, and c and the variable z may be complex and in order to avoid division by zero
c 6= 0,−1,−2, . . . . The series is convergent for |z| < 1 and for |z| = 1, <(c− a− b) > 0.

2.2.6 The Mittag-Leffler functions. Let us consider the following entire function (Mittag-Leffler
function) defined by the series

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0. (2.2.1)

The more general series

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0,

is also referred to as the Mittag-Leffler function. Obviously,

Eα,1(z) = Eα(z).

The Mittag-Leffler function is an important function in the field of fractional calculus. Like the exponen-
tial function result from the solution of integer order differential equations, the Mittag-Leffler function
plays same role in the solution of non-integer order differential equations. For α = 1, the Mittag-Leffler
function is the exponential function.
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Figure 2.2: Graph of the Mittag-Leffler function Eα(z) with z ∈ [−3, 3] for α = 1 (solid red) and
α = 3/2 (dashed blue).

2.3 Riemann-Liouville differential and integral operators

In this chapter, a first definition for fractional integral and differential operators Jαa and Dα, α 6∈ N is
given.

2.3.1 Riemann-Liouville integrals.

2.3.2 Definition. Let α > 0. The operator Jαa defined on L1[a, b] by

Jαa f(x) :=
1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt,

for a ≤ x ≤ b is called the Riemann-Liouville fractional integral operator of order α.

It is obvious that for α = 0, then J0
a is the identity operator I. Moreover, for α ∈ N then the Riemann-

Liouville fractional integral coincides with the classical definition of Jna in the case n ∈ N (notice that
we have extended the domain from Riemann integrable functions to Lebesgue integrable functions).

Furthermore, if α > 1, it is evident that the integral Jαa f(x) exists for every x ∈ [a, b]: the integrand
is the product of an integrable function f(t) and the continuous function g(t) = (x − t)α−1. On the
other hand, for 0 < α < 1 we need to recall the following result from reference [6, p. 13]

2.3.3 Theorem. Let f ∈ L1[a, b] and α > 0. Then, the integral Jαa f(x) exists for almost every
x ∈ [a, b]. Moreover, the function Jαa f itself is also an element of L1[a, b].

We also have:

2.3.4 Theorem. Let α, β > 0 and f ∈ L1[a, b]. Then,

Jαa J
β
a f = Jα+β

a f = Jβa J
α
a f

holds almost everywhere on [a, b]. If additionally f ∈ C[a, b] or α + β ≥ 1, then the identity holds
everywhere on [a, b].

Under certain assumptions, it is possible to interchange the limit operation and fractional integration
[6, p. 21].
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2.3.5 Theorem. Let α > 0. Assume that {fk}∞k=1 is a uniformly convergent sequence of continuous
functions on [a, b]. Then we may interchange the fractional integral operator and the limit process,(

Jαa lim
k→∞

fk

)
(x) =

(
lim
k→∞

Jαa fk

)
(x).

In particular, the sequence of functions {Jαa fk}∞k=1 is uniformly convergent.

2.4 Riemann-Liouville derivatives

In the classical situation, we have stated the following fundamental property in Lemma 2.1.4:

Dnf = DmJm−na f

where m,n ∈ N satisfy m > n.

Following reference [16, p. 70], we have:

2.4.1 Definition. Let α > 0 and m = dαe. The operator Dα
a defined by

Dα
a f := DmJm−αa f

is called the Riemann-Liouville fractional differential operator of order α. Here, d·e denotes the ceiling
function.

If α = 0, we set D0
a := I the identity operator. Similarly to the fractional integral operator, if α = n ∈ N

then Dn
a coincides with the classical differential operator. Moreover, from reference [16, Eq. (2.1.5)],

we have:

(Dα
a f)(x) =

1

Γ(m− α)
Dm

∫ x

a

f(t)

(x− t)α−m+1
dt.

In particular, if 0 < α < 1, then

(Dα
a f)(x) =

1

Γ(1− α)

d

dx

∫ x

a

f(t)

(x− t)α
dt.

Similarly to the fractional integral operator, the fractional differential operators form a semigroup.

2.4.2 Theorem. Assume that α, β > 0. Moreover, let φ ∈ L1[a, b] and f = Jα+β
a φ. Then,

Dα
aD

β
af = Dα+β

a f.

Moreover, from reference [6, p. 30], we have:

2.4.3 Theorem. Let α ≥ 0. Then, for every f ∈ L1[a, b]

Dα
aJ

α
a f = f

almost everywhere.

For uniform convergent sequences the following result holds true.

2.4.4 Theorem. Let α > 0. Assume that {fk}∞k=1 is a uniformly convergent sequence of continuous
functions on [a, b], and that Dα

a fk exists for every k. Moreover, assume that {Dα
a fk}∞k=1 converges

uniformly on [a+ ε, b] for every ε > 0. Then, for every x ∈ (a, b] we have(
lim
k→∞

Dα
a fk

)
(x) =

(
Dα
a lim
k→∞

fk

)
(x).
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2.5 Relations between Riemann-Liouville integrals and derivatives

As we have defined, the fractional integral of order α > 0 of a given function f : R→ R is defined, for
t > 0, as [16, 28]

Iαf (t) = Jα0 f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds. (2.5.1)

Note that for α < 1 the integral may be singular, but it is well defined if, for example, f ∈ L1
loc(R).

Using (2.5.1), we have defined the fractional Riemann-Liouville derivative of order α ∈ (0, 1), of f as
[16, 28]

rlDαf (t) = Dα
0 f(t) = D1

(
I1−αf

)
(t) =

1

Γ(1− α)

d

dt

∫ t

0
(t− s)−αf(s)ds,

provided that the right hand side is defined for almost every t ∈ R+. This is well defined if, for example,
f is absolutely continuous on every compact interval of R.

Moreover, as in the integer case, we have

rlDα(Iαf) (t) = f(t);

but Iα(rlDαf) is not, in general, equal to f . Indeed,

Iα(rlDαf) (t) = f(t) + c1 t
α−1,

where c1 ∈ R (see reference [6, Theorem 2.23]).

2.6 Caputo derivatives

Now, we introduce the Caputo derivative, which is a variation of the Riemann-Liouville derivatives.
It simplify computations in some situations, when we model real-world phenomena with fractional
differential equations [6].

The Caputo fractional derivative [16, 28] can be defined in terms of the Riemann-Liouville fractional
derivative as

cDαf (t) = rlDαg (t),

with g(t) = f(t)− f(0).

In addition, if f is an absolutely continuous function on every compact interval (of R), we can write,
for α ∈ (0, 1),

cDαf (t) = I1−αD1f (t) =
1

Γ(1− α)

∫ t

0
(t− s)−αf ′(s) ds. (2.6.1)

Note also that if α ∈ (0, 1) and f is a function for which the Caputo fractional derivative, cDαf , exists
together with the Riemann-Liouville fractional derivative, rlDαf , both of them of order α, then we
have the following relation [16, (2.4.8), p. 91]

cDαf (t) = rlDαf (t)− f(0)

Γ(1− α)
tα.
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2.7 Relation between fractional integrals and Caputo derivatives

As in the integer case, we have
cDα(Iαf) (t) = f(t);

but Iα(cDαf) is not, in general, equal to f . Indeed,

Iα(cDαf) (t) = f(t) + c2,

where c2 ∈ R.

2.8 Relation between the Caputo fractional derivative and the Mittag-
Leffler function

Let us recall the Mittag-Leffler function Eα(z) defined in (2.2.1), and let us consider the following
fractional differential equation

cDαy(x;α) = y(x;α), (2.8.1)

which is a fractional analogue of the differential equation for the exponential function. Let us assume
that there exists a solution of the above fractional differential equation with a formal power expansion
as

y(x;α) =

∞∑
n=0

an(α)xnα.

Using (2.6.1), we have

cDα xnα =
Γ(1 + αn)

Γ(1 + α(n− 1))
xα(n−1).

Substitution into the fractional differential equation (2.8.1) yields

∞∑
n=0

an+1(α)xnα
Γ(1 + α(n+ 1))

Γ(1 + αn)
=

∞∑
n=0

an(α)xnα,

which implies

an+1(α) = an(α)
Γ(1 + αn)

Γ(1 + α(n+ 1))
.

The solution of the above recurrence relation is

an(α) =
a0(α)

Γ(1 + nα)
,

that is, the solution of the fractional differential equation (2.8.1) is up to a multiplicative constant the
Mittag-Leffler function (2.2.1). Notice that in the limit as α→ 1−, we obtain

an =
a0

n!

which gives as result the exponential function exp(x) up to a multiplicative constant.
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2.9 Fractional analogue of the logarithmic function

Next, we introduce a fractional elementary function which seems to be new in the literature. As it
is well-known, the logarithmic function y(x) = log(1 + x) is a solution of the following first order
differential equation

y′(x) =
1

1 + x
.

Let us now consider the following fractional differential equation

cDαy(x;α) =
1

1 + xα
.

If we consider a formal power expansion of y(x;α) as

y(x;α) =

∞∑
n=0

an(α)xnα,

from the fractional differential equation we obtain

y(x;α) =
∞∑
n=0

(−1)n−1 Γ(α(n− 1) + 1)

Γ(nα+ 1)
xnα.

Notice that the fractional derivative of y(x;α) is

∞∑
n=1

(−1)n−1xα(n−1) =
1

1 + xα
,

in accordance with the fractional differential equation. Moreover, the limit as α → 1− of y(x;α) and
of its fractional derivative is given by

lim
α→1−

y(x;α) =
∞∑
n=1

(−1)n−1x
n

n
= log(1 + x),

and

lim
α→1−

cDαy(x;α) =

∞∑
n=1

(−1)n−1xn−1 =
1

1 + x
.

After this short introduction to fractional calculus, we shall show a real-world application in the next
chapter.



3. Real-world application of fractional calculus

This chapter gives an example of a real-world application of fractional calculus. We first introduce the
classical diffusion equation, and then the anomalous diffusion equation. We solve the latter analytically
and numerically. Finally, we give some examples.

3.1 The diffusion equation

Consider a glass of water. The water consists of water molecules that move randomly and interact with
each other. If, for example a drop of water-based ink is introduced in the water in a gentle way, the ink
molecules will move similarly to the water and as a consequence the drop of ink will dissolve until the
entire glass of water is equally colored. This process is referred to as diffusion: “the process by which
matter is transported from one part of a system to another as a result of random molecular motions” [5,
p. 1]. Thus, diffusion is a macroscopic interpretation of a microscopic phenomenon.

3.1.1 Definition (Diffusion equation). Let D > 0. The diffusion equation is defined by

∂C

∂t
= D

∂2C

∂x2
(3.1.1)

where C is a function of x and t, x ∈ R and t > 0.

One approach to solve the diffusion equation, is to apply the Fourier transform in x to (3.1.1). We
demonstrate this below by computing the Green’s function of the equation. That is, we consider the
initial condition Ĉ(k, 0) ≡ 1. We have

dĈ(k, t)

dt
= D(ik)2Ĉ(k, t)

where Ĉ is the Fourier transform of C and k is the frequency variable. Thus,

dĈ(k, t)

dt
= D(ik)2Ĉ(k, t) ⇒ dĈ(k, t)

Ĉ(k, t)
= D(ik)2dt

⇒ Ĉ(k, t) = eD(ik)2t by using the initial condition Ĉ(k, 0) ≡ 1

⇒ Ĉ(k, t) = e−Dtk
2
.

By inverting the Fourier transform, we obtain the Green’s function

C(x, t) =
1

2
√
πDt

exp

(
− x2

4Dt

)
.

In case of a boundary value problem the final expression for C(x, t) may differ since initial conditions
must be considered.

3.2 The anomalous diffusion equation

In certain cases, the normal diffusion equation is not a satisfactory model for the observed data. For
example, in a study on ground water dispersion, higher diffusion speeds than normal were observed [21].

10
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Normal diffusion models were not able to model this phenomenon. In contrast, a fractional diffusion
model based on the fractional diffusion equation with drift, was able to model the data and explain this
observation of so-called super-diffusion. In this section, we study the fractional diffusion equation with
drift. We start our study on the microscopic level.

Let X,X1, . . . , Xn, n ∈ N∗ be independent and identically distributed random variables. (These
variables could for example model the movement of the water molecules in the example above.) Suppose
that the probability Pr{X > x} = Ax−α, where A > 0 and 1 < α < 2. We have Pr{X ≤ x} =
1−Ax−α and Pr{X ≤ x} = 0⇒ x = A1/α. So the cumulative distribution function of X is

FX(x) =

{
0, x < A1/α,

1−Ax−α, x ≥ A1/α.

Its probability density function is

fX(x) =

{
0, x < A1/α,

Aαx−α−1, x ≥ A1/α.

Its mean is

µ = E[X] =

∫ ∞
A1/α

xfX(x) dx =

∫ ∞
A1/α

xAαx−α−1 dx = Aα

[
1

−α+ 1
x−α+1

]∞
A1/α

=
α

α− 1
A1/α.

Its second order moment is

E[X2] =

∫ ∞
A1/α

x2fX(x) dx =

∫ ∞
A1/α

x2Aαx−α−1 dx = Aα

[
1

−α+ 2
x−α+2

]∞
A1/α

= ∞,

since 0 < −α + 2 < 1. We have µ < ∞, but E[X2] = ∞. So, the extended central limit theorem in
the reference [23] implies that

lim
n→+∞

Pr

{
X1 + · · ·+Xn − nµ

n1/α
≤ x

}
→ Pr{Zα ≤ x}, (3.2.1)

where Zα is a stable random variable with index α, whose density gα(x) has Fourier transform

ĝα(k) =

∫ ∞
−∞

e−ikxgα(x) dx = exp (D(ik)α) , (3.2.2)

for some D > 0 depending on A and α.

To simulate X, we use the inverse cumulative distribution method which says that if X is a random
variable with a cumulative distribution function FX , then X = F−1

X (U), where U is uniform on (0, 1).

Let us set y = FX(x) = 1 − Ax−α, then x = F−1
X (y) =

(
A

1−y

)1/α
. So X =

(
A

1−U

)1/α
, where U is

uniform on (0, 1).

Now, let us define Yi = v∆t+ (∆t)1/αXi where ∆t = t/n, t > 0,

Xi =

(
A

1− Ui

)1/α

−A1/α α

α− 1
,
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and U1, . . . , Un are independent uniform (0, 1) random variables. Since E[X] = µ = A1/α α
α−1 , E[X2] =

∞ and U1, . . . , Un are independent uniform (0, 1) random variables, then X1, . . . , Xn are independent
random variables with mean 0 and infinite variance. Then, the extended central limit theorem (3.2.1)
implies that X1 + · · ·+Xn ≈ n1/αZα for n large. So we have

n∑
i=1

Yi =

n∑
i=1

(
v∆t+ (∆t)1/αXi

)
= vn∆t+ (∆t)1/α

n∑
i=1

Xi ≈ vn∆t+ (∆t)1/αn1/αZα

= vn∆t+ (n∆t)1/αZα = vt+ t1/αZα,

by using t = n∆t. So Y1 + · · · + Yn ≈ vt + t1/αZα, where Zα is a stable random variable with index
α, whose density gα(x) has Fourier transform (3.2.2), and distribution function

Gα(x) =

∫ x

−∞
gα(u) du.

We have

Pr{vt+ t1/αZα ≤ x} = Pr

{
Zα ≤

x− vt
t1/α

}
=

∫ t−1/α(x−vt)

−∞
gα(u) du

=

∫ x

−∞
gα(t−1/α(y − vt))t−1/αdy,

using the subtitution u = t−1/α(y − vt). Hence the distribution function of the limit Y = vt+ t1/αZα
is

FY (x) =

∫ x

−∞
gα(t−1/α(y − vt))t−1/αdy.

Let us find the Fourier transform of its density

hα(x) = gα(t−1/α(x− vt))t−1/α, (3.2.3)

by using direct computations

ĥα(k) =

∫ ∞
−∞

e−ikxgα(t−1/α(x− vt))t−1/α dx

=

∫ ∞
−∞

e−ik(vt+t1/αu)gα(u)t−1/αt1/α du using the subtitution u = t−1/α(x− vt)

= e−ikvt
∫ ∞
−∞

e−ikt
1/α
gα(u) du

= e−ikvt eD(ikt1/α)α by using (3.2.2)

= e−ikvt+Dt(ik)α .

Let us define the fractional diffusion equation with drift:

3.2.1 Definition (Fractional diffusion equation with drift). Let v > 0, D > 0 and 1 < α < 2. The
fractional diffusion equation with drift is

∂C

∂t
= −v∂C

∂x
+D

∂αC

∂xα
, (3.2.4)

where C is a function of x and t, x ∈ R and t > 0, v is given in meters per second and the fractional
diffusion/dispersion coefficient D is given in metersα per second. Notice that in the case α = 2 then D
is given in meters2 per second.
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3.2.2 Remark. The function hα defined in (3.2.3) solves the fractional diffusion equation with drift.
Since x ∈ R, then, by taking the Fourier transform in x of (3.2.4), we have:

dĈ

dt
= −v(ik)Ĉ +D(ik)αĈ,

and

dĈ

dt
= −v(ik)Ĉ +D(ik)αĈ ⇒ dĈ

Ĉ
= (−vik +D(ik)α)dt

⇒ ln Ĉ = (−vik +D(ik)α)t+ constant

⇒ Ĉ(k, t) = e−vikt+Dt(ik)α , by using the initial condition Ĉ(k, 0) ≡ 1

⇒ Ĉ(k, t) = ĥα(k).

The main difficulty of this approach is to find the inverse Fourier transform of ĥα(k), which might
involve cumbersome computations. In the case α = 2, we recover the classical situation and it can be
obtained by integration [23, p. 5] as

C(x, t) =
exp

(
− (x−tv)2

4D t

)
2
√
π
√
D t

,

but for 1 < α < 2, the result cannot be expressed in terms of elementary functions. In case of a
boundary value problem, the final expression for C(x, t) may differ.

Another way to solve the fractional diffusion equation with drift is to proceed numerically as described
below.

3.2.3 Numerical solution of the anomalous diffusion equation. After solving (3.2.4) analytically,
we solve it numerically in this section by considering [22, theorem 2.7] as follows:

3.2.4 Theorem. The implicit Euler method solution to (3.2.4) with 1 < α ≤ 2 on the finite domain
L ≤ x ≤ R, with boundary conditions C(x = L, t) = 0 and C(x = R, t) = bR(t) for all t ≥ 0, based
on the shifted Grünwald approximation

∂αC(x, t)

∂xα
=

1

Γ(−α)
lim
M→∞

1

hα

M∑
k=0

Γ(k − α)

Γ(k + 1)
C(x− (k − 1)h, t), (3.2.5)

where h = (x−L)
M , is consistent and unconditionally stable.

The proof can be found in reference [22].

Let us consider the following fractional advection-dispersion flow equation

∂C

∂t
= −v∂C

∂x
+D

∂αC

∂xα
, (x, t) ∈ [L,R]× [0, T ] (3.2.6)

with the initial and boundary conditions:
C(x, 0) = F (x), L < x < R,

C(L, t) = 0,
∂C(R, t)

∂t
= 0, 0 ≤ t ≤ T,

(3.2.7)
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where F (L) = 0 and F ′(R) = 0. Theorem 3.2.4 is also true on these boundary conditions. We consider
an equally spaced mesh of M + 1 points for the spatial domain L < x < R, N constant time steps for
the temporal domain 0 ≤ t ≤ T . We denote the spatial grid points by xi = L + ih, i = 0, 1, . . . ,M
and the temporal grid points by tn = nτ, i = 0, 1, . . . , N . Here, the grid spacing is simply h = R−L

M in
the spatial domain and τ = T

N in the temporal domain.

At the grid point (xi, tn), (3.2.6) becomes

∂C

∂t

∣∣∣∣
(xi,tn)

= −v ∂C
∂x

∣∣∣∣
(xi,tn)

+D
∂αC

∂xα

∣∣∣∣
(xi,tn)

(3.2.8)

The time derivative on the left hand side of (3.2.8) can be approximated by

∂C

∂t

∣∣∣∣
(xi,tn)

≈
Cn+1
i − Cni

τ
,

and the spatial derivative on the right hand side of (3.2.8) can be approximated by

∂C

∂x

∣∣∣∣
(xi,tn)

≈
Cn+1
i − Cn+1

i−1

h
,

that is, we exploit an up-wind scheme (since v > 0). By using (3.2.5), the spatial fractional derivative
on the right hand side of (3.2.8) can be approximated by

∂αC

∂xα

∣∣∣∣
(xi,tn)

≈ 1

hαΓ(−α)

i+1∑
k=0

Γ(k − α)

Γ(k + 1)
Cn+1
i−k+1.

As a consequence, (3.2.8) becomes

Cn+1
i − Cni

τ
= −v

Cn+1
i − Cn+1

i−1

h
+
D

hα

i+1∑
k=0

gkC
n+1
i−k+1, for i = 1, 2, . . . ,M − 1, (3.2.9)

where gk is the normalized Grünwald weight defined in [22] as

gk =
Γ(k − α)

Γ(−α)Γ(k + 1)
,

with g0 = 1 and g1 = −α. Let us define E = v τh and B = D τ
hα . Then, (3.2.9) can be written as

Cn+1
i − Cni = −E(Cn+1

i − Cn+1
i−1 ) +B

i+1∑
k=0

gkC
n+1
i−k+1,

which can be arranged as

− g0BC
n+1
i+1 + (1 + E − g1B)Cn+1

i − (E + g2B)Cn+1
i−1 −B

i+1∑
k=0

gkC
n+1
i−k+1 = Cni . (3.2.10)

So, (3.2.10) can be written in matrix form as ACn+1 = Cn, where

Cn+1 = (Cn+1
0 , Cn+1

1 , . . . , Cn+1
M )T , Cn = (Cn0 , C

n
1 , . . . , C

n
M )T
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and A is a (M + 1)× (M + 1) matrix defined as follows: for i = 1, . . . ,M − 1 and j = 1, . . . ,M − 1,

Ai,j =



0, if j ≥ i+ 2,

−g0B, if j = i+ 1,

1 + E − g1B, if j = i,

−E − g2B, if j = i− 1,

−gi−j+1B, if j < i− 1.

(3.2.11)

For α = 2, we approximate ∂2C
∂x2

∣∣∣
(xi,tn)

by

∂2C

∂x2

∣∣∣∣
(xi,tn)

≈
Cn+1
i+1 − 2Cn+1

i + Cn+1
i−1

h2
.

So (3.2.8) becomes

−BCn+1
i+1 + (1 + E + 2B)Cn+1

i − (E +B)Cn+1
i−1 = Cni , for i = 1, 2, . . . ,M − 1,

and the matrix A is written as

Ai,j =



0, if j ≥ i+ 2,

−B, if j = i+ 1,

1 + E + 2B, if j = i,

−E −B, if j = i− 1,

0, if j < i− 1.

(3.2.12)

Similarly, for α = 1, the matrix A is written as

Ai,j =


0, if j ≥ i+ 1,

1 + E −B, if j = i,

−E +B, if j = i− 1,

0, if j < i− 1.

(3.2.13)

Boundary conditions:

• Since C(x, 0) = F (x) for all L ≤ x ≤ R, then C0
0 = F (x0), C0

1 = F (x1), . . . , C0
M =

F (xM ). So we shall initialize our matrix C as C0 = (F (x0), F (x1), . . . , F (xM )).

• Since C(L, t) = 0 for all 0 ≤ t ≤ T , Then C0
0 = C1

0 = · · · = CN0 = 0. Hence A0,0 = 1 and
A0,j = 0, for j = 1, . . . ,M .

• We have

∂C

∂x

∣∣∣∣
(xi,tn)

≈
Cn+1
i − Cn+1

i−1

h
so

∂C

∂x

∣∣∣∣
(xM ,tn)

≈
Cn+1
M − Cn+1

M−1

h
.

Since ∂C(R,t)
∂x = 0, then Cn+1

M −Cn+1
M−1 = 0 which implies Cn+1

M = Cn+1
M−1. Hence AM,M = 1,

AM,M−1 = −1 and AM,j = 0 for j = 0, . . . ,M − 2.

A Python code for solving the anomalous diffusion equation with drift (3.2.6) with boundary conditions
(3.2.7) has been included in Appendix A and used in our numerical experiments.
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3.2.5 Explicit examples. We solve the anomalous diffusion equation with drift (3.2.6) with boundary
conditions (3.2.7) by considering the numerical scheme described above in the domain [0, 1]× [0, 1] for
some specific values of the parameters, namely: v = 0.5, D = 0.1, and two choices of C(x, 0) = F (x) in
(3.2.7). In the first case we have assumed that the initial concentration is given by a normal distribution

F1(x) = 1
σ
√

2π
exp

(
−
(x−µ

σ

)2)
(see Figure 3.1 below), with mean µ = 0.3, standard deviation σ = 0.05,

f(0) = 0 and f ′(1) = 0. Moreover, we have also considered as initial concentration F2(x) = 1[0.05,1](x)
(see Figure 3.2 below). In our numerical experiments we consider M = 1000 divisions in space,
N = 2.5M divisions in time and C0 = (f(x0), f(x1), . . . , f(xM ))T . Also, the value of the fractional
parameter α varies as α = 1, 1.25, 1.5, 1.75, and 2. For the first case α = 1, the matrix A is given
by (3.2.13). For the second, third, and fourth cases the matrix A is given by (3.2.11). Finally for the
last case α = 2 –which corresponds to the classical non-fractional situation– the matrix A is given by
(3.2.12).
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Figure 3.1: The concentration C(x, t) as a function of x, solution of the anomalous diffusion equa-
tion with drift (3.2.6) with boundary conditions (3.2.7) in the particular case C(x, 0) = F (x) =

1
σ
√

2π
exp

(
−
(x−µ

σ

)2)
with µ = 0.3 and σ = 0.05. The graphs show the solution C(x, t) for t = 0, 0.2,

0.4 and 0.6 for several values of the fractional parameter α. From left to right and top to bottom, α
varies from 1 to 2 as α = 1, α = 1.25, α = 1.5, α = 1.75, and α = 2.

Figure 3.1 shows the result for the gaussian initial condition. For α = 1, we have a pure transport
equation. Thus the solution is a pure translation of the initial profile at the speed v. As shown in the
graphs, the peak of concentration moves with the constant speed v as expected. However, we also see
that the shape of the gaussian spreads out with time, which was not expected. This is due to diffusion
introduced by the numerical scheme [3]. For α = 1.25, 1.5, 1.75 and 2, the peak of concentration moves
with time, but not exactly with the speed v. We can also see that the diffusion grows with α. So we
can hypothesize that the fractional term behaves as a mix of pure transport and pure diffusion, where
the quantity of transport and diffusion respectively depends on α in a non-trivial way.

Next, in Figure 3.2 shows the results for the step function initial condition. For α = 1, we see that there
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is transport with the speed v as in the previous case. The smoothening of the concentration profile with
time indicates that there is numerical dissipation. Moreover, no oscillations are visible. Thus, there is
no numerical dispersion as expected for the up-wind scheme [3].
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Figure 3.2: The concentration C(x, t) as a function of x, solution of the anomalous diffusion equation
with drift (3.2.6) with boundary conditions (3.2.7) in the particular case C(x, 0) = F (x) = 1[0.05,1](x).
The graphs show the solution C(x, t) for t = 0, 0.2, 0.4 and 0.6 for several values of the fractional
parameter α. From left to right and top to bottom, α varies from 1 to 2 as α = 1, α = 1.25, α = 1.5,
α = 1.75, and α = 2.

In this chapter, we have analyzed and solved the fractional diffusion equation with drift which appears
in anomalous diffusion. Another class of fractional differential equations (fractional Pearson equation)
is presented in the next chapter. We exploit it to create fractional analogues of the gamma, beta and
normal distributions which might be used in many areas like statistics, special functions, etc.



4. Generalized Pearson equations

4.1 Introduction

We define a Pearson density like in [15, p. 16] by a valid solution to the first order differential equation

1

%(x)
%′(x) = − a0 + x

c0 + c1x+ c2x2
. (4.1.1)

Since the shape of the curve of solutions of (4.1.1) varies considerably, with the parameters a0, c0, c1,
and c2, Pearson classified into a number of types (see the original [27] or a more recent presentation
[15] for more explanations). Among these solutions, some are widely used in statistics: the normal
distribution

%N (x) =
exp(−x2)√

π
, x ∈ R, (4.1.2)

the gamma distribution

%G(x; a) =
xa exp(−x)

Γ(a+ 1)
, a > −1, x > 0, (4.1.3)

and the beta distribution

%B(x; a, b) =
xa (1− x)b Γ(a+ b+ 2)

Γ(a+ 1) Γ(b+ 1)
, a, b > −1, x ∈ (−1, 1). (4.1.4)

They are weight functions on I [34], where I is the corresponding support for each of them. Let us
write the Pearson equation for the weight function of orthogonality %(x)

d

dx
(σ(x)%(x)) = τ(x)%(x), (4.1.5)

as in the theory of univariate orthogonal polynomials of hypergeometric type [25, Chapter 1], where σ
and τ are polynomials of at most degree two and one, respectively. Our three distributions solve (4.1.5)
in these three cases:

%′N (x)

%N (x)
= −2x, σ(x) = 1, τ(x) = −2x,

%′G(x; a)

%G(x; a)
=
a− x
x

, σ(x) = x, τ(x) = a+ 1− x,

%′B(x; a, b)

%B(x; a, b)
=
a− (a+ b)x

x(1− x)
, σ(x) = x(1− x), τ(x) = 1 + a− (a+ b+ 2)x.

There also exist limit transitions between these three distributions [25] such as between the beta and
gamma,

lim
b→∞

1

b
%B

(x
b

; a, b
)

= %G(x; a), (4.1.6)

and between the gamma and normal

lim
a→∞

√
a%G(a+ x

√
2a; a) = %N (x). (4.1.7)

18
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Let us now define the Fractional Pearson equation [2]

A(xα)Dα%(x) = B(xα)%(x), 0 < α < 1, (4.1.8)

where A(x) is a polynomial of at most degree two and B(x) is a polynomial of degree one. Notice that
(4.1.8) converges formally to (4.1.1) as α→ 1−, since cDαf(t) tends formally to f ′(t) as α→ 1−.

In this chapter, we are first interested in solving (4.1.8), for some specific A and B. These solutions
provide fractional analogues of beta, gamma and normal distributions (section 4.2). We shall also find
appropriate limit transitions between these three distributions (section 4.3) and finally we introduce
weighted quasi-orthogonal polynomials (section 4.4).

4.2 Fractional Pearson equations

In this section we solve some fractional differential equations such that their solutions generalize classical
Pearson equations for beta, gamma and normal distributions.

4.2.1 Fractional normal density. Let us consider (4.1.8) with A(x) = 1 and B(x) = −2x as follows:

cDα%(x;α) = −2xα%(x;α), 0 < α < 1, x > 0. (4.2.1)

We can solve (4.2.1) by considering the formal series expansion

%(x;α) =

∞∑
n=0

an(α)xnα, x > 0. (4.2.2)

So the left hand side of (4.2.1) becomes

cDα%(x;α) =
∞∑
n=0

an+1(α)xnα
Γ(1 + α(n+ 1))

Γ(1 + nα)
. (4.2.3)

By replacing (4.2.2) and (4.2.3) in (4.2.1), and by identification, we obtain the following recurrence
relation for the coefficients an(α),

an(α) = −2an−2(α)
Γ(α(n− 1) + 1)

Γ(αn+ 1)
. (4.2.4)

By considering the initial conditions a−1 = 0 and a0 = 1 we create the fractional normal density defined
by

%(x;α) =
∞∑
n=0

1 + (−1)n

2
(−2)n/2 xnα

∏n/2−1
j=0 Γ(1 + α(1 + 2j))∏n/2

j=0 Γ(1 + 2αj)
, x > 0, (4.2.5)

and for x < 0, we exploit the symmetry %(−x;α) = %(x;α).

When α→ 1−, (4.2.4) becomes

an = −2
an−2

n
.

By considering the initial conditions a0 = 1 and a1 = 0, (4.2.4) is the recurrence relation for the
coefficients an in the expansion

%N (x) =
∞∑
n=0

anx
n,
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where %N (x) is defined in (4.1.2). It is also good to know that for the initial conditions a0 = 0 and
a1 = 1, (4.2.4) is the recurrence relation for another solution giving rise to g(x) = 1

2

√
πe−x

2
erfi(x).

Similarly, in the fractional case the recurrence relation (4.2.4) could generate another solution.

We can see in Figure 4.1 that the fractional normal density approximates the classical normal density
with α close to 1.
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Figure 4.1: Graph of the partial sum defined from (4.2.5) and expanded to x < 0 by symmetry with
100 terms and α = 9/10 (dashed blue) and exp(−x2) (solid red) for x ∈ [−3, 3].

4.2.2 Fractional gamma density. In this section, let a > 0. When we consider (4.1.8) with A(x) = x

and B(x) = Γ(1+a)
Γ(1+a−α) − x, we have

xα cDα%(x; a;α) =

(
Γ(1 + a)

Γ(1 + a− α)
− xα

)
%(x; a;α), x > 0. (4.2.6)

The fractional differential equation (4.2.6) can be solved by considering the formal series expansion

%(x; a;α) =
∞∑
n=0

bn(a;α)xnα+a. (4.2.7)

So the left hand side of (4.2.6) becomes

xα cDα%(x; a;α) =
∞∑
n=0

bn(a;α)
Γ(a+ nα+ 1)

Γ(a+ (n− 1)α+ 1)
xnα+a. (4.2.8)

By replacing (4.2.7) and (4.2.8) in (4.2.6), and by identification, we obtain the following recurrence
relation for the coefficients bn(a;α),

bn(a;α) =
bn−1(a;α)

Γ(a+1)
Γ(a−α+1) −

Γ(a+nα+1)
Γ(a+(n−1)α+1)

, (4.2.9)

which can be written explicitly as

bn(a;α) =
b0(a;α)∏n

j=1
Γ(1+a)

Γ(1+a−α) −
Γ(1+a+jα)

Γ(1+a+(j−1)α)

.
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Hence, we define the fractional gamma density by

%(x; a;α) =
∞∑
n=0

b0(a;α)∏n
j=1

Γ(1+a)
Γ(1+a−α) −

Γ(1+a+jα)
Γ(1+a+(j−1)α)

xnα+a . (4.2.10)

When α→ 1−, (4.2.9) becomes

bn(a) = −bn−1(a)

n
,

which is the recurrence relation for the coefficients bn in the expansion

%G(x; a) =
∞∑
n=0

bnx
n+a

where %G(x; a) is defined in (4.1.3). Notice that as α→ 1− the fractional differential equation (4.2.6)
converges to

xy′(x) = (a− x)y(x)

which is the differential equation satisfied by %G(x; a).

We can see in Figure 4.2 that the fractional gamma density approximates the classical gamma density
with α close to 1.
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Figure 4.2: Graphs of the partial sum defined in (4.2.10) with 30 terms (dashed blue) and xa exp(−x)
(solid red) for x ∈ [0, 8], a = 1, and b0(a;α) = 1. On the left hand side α = 9/10 and on the right
hand side α = 99/100.

4.2.3 Fractional beta density. In this section, let a, b > 0. When we consider (4.1.8) with A(x) =

x(1− x) and B(x) = Γ(a+1)
Γ(a−α+1) −

Γ(a+b+1)
Γ(a−α+b+1)x

α, we have

xα(1− xα) cDα%(x; a, b;α) =

(
Γ(a+ 1)

Γ(a− α+ 1)
−
(

Γ(a+ b+ 1)

Γ(a− α+ b+ 1)

)
xα
)
%(x; a, b;α), (4.2.11)

for x > 0. We can solve the fractional differential equation (4.2.11) by considering the formal series
expansion

%(x; a, b;α) =

∞∑
n=0

cn(a, b;α)xnα+a. (4.2.12)



Section 4.3. Limit transitions Page 22

So the left hand side of (4.2.11) becomes

xα(1− xα) cDα%(x; a, b;α)

=
∞∑
n=0

cn(a, b;α)
Γ(a+ nα+ 1)

Γ(a+ (n− 1)α+ 1)
xnα+a

−
∞∑
n=1

cn−1(a, b;α)
Γ(a+ (n− 1)α+ 1)

Γ(a+ (n− 2)α+ 1)
xnα+a. (4.2.13)

By replacing (4.2.12) and (4.2.13) in (4.2.11), and by identification, we obtain the following recurrence
relation for the coefficients cn(a, b;α),

cn(a, b;α) = cn−1(a, b;α)
Γ(a− α+ 1)Γ(a+ α(n− 1) + 1)

Γ(a− α+ b+ 1)Γ(a+ α(n− 2) + 1)

× Γ(a+ b+ 1)Γ(a+ α(n− 2) + 1)− Γ(a− α+ b+ 1)Γ(a+ α(n− 1) + 1)

Γ(a+ 1)Γ(a+ α(n− 1) + 1)− Γ(a− α+ 1)Γ(a+ αn+ 1)
, (4.2.14)

Hence we give rise to the fractional beta density.

When α→ 1−, (4.2.14) becomes

cn(a, b) =
1

n
(n− b− 1)cn−1(a, b),

which is the recurrence relation for the coefficients cn(a, b) in the expansion

xa(1− x)b =

∞∑
n=0

cn(a, b)xn.

Notice that as α→ 1− the fractional differential equation (4.2.11) converges to

x(1− x)y′(x) = (a− (a+ b)x)y(x)

which is the differential equation satisfied by %B(x; a, b) defined in (4.1.4).

We can see in Figure 4.3 that the fractional beta density approximates the classical beta density with α
close to 1.

4.3 Limit transitions

Now, we want to find limit transitions between our fractional normal, gamma and beta densities.

4.3.1 Limit between the fractional beta and gamma densities. Since (4.2.12), then

ba%
(x
b

; a, b;α
)

=
∞∑
n=0

1

bnα
cn(a, b;α)xnα+a.

By using (4.2.14) and (4.2.9), we obtain

lim
b→∞

1

bnα
cn(a, b;α) = bn(a;α).

So
lim
b→∞

ba%
(x
b

; a, b;α
)

= %(x; a;α),

which is a generalization of (4.1.6) to the fractional case.
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Figure 4.3: Graphs of the partial sum defined in (4.2.12) with 30 terms (dashed blue) and xa(1 − x)b

(solid red) for x ∈ [0, 1] and a = 1, b = 2. On the left hand side α = 9/10 and on the right hand side
α = 99/100.

4.3.2 Limit between the fractional gamma and normal densities. To know how to compute the
limit between the fractional gamma density and the fractional normal density, we have first to know how
to compute the limit between the gamma density and the normal density. Let us define a modification
of the gamma density

%̃(x; a) = %G(a+
√

2ax; a) =
(a+

√
2ax)a exp(−a−

√
2ax)

Γ(a+ 1)
, (4.3.1)

which comes from the limit relation (4.1.7). The power series expansion of (4.3.1) gives

%̃(x; a) =

∞∑
n=0

b̃n(a)xn, (4.3.2)

where

b̃n(a) =

(
a

n

)
2n/2 aa−n/2 exp(−a)

Γ(a+ 1)
1F1

(
−n

1 + a− n a

)
. (4.3.3)

We have

lim
a→∞

√
a

(
a

n

)
2n/2aa−

n
2 1F1(−n; a− n+ 1; a)

exp(a) Γ(a+ 1)
=

(−1)n/2 ((−1)n + 1)

2
√

2π
(
n
2

)
!

.

So

lim
a→∞

√
a b̃n(a) =


0, for n odd

(−1)n√
2πn!

, for n even,

which corresponds to the coefficients in the power series expansion

%(x) =
exp(−x2)√

2π
=

∞∑
n=0

(−1)nx2n

√
2πn!

.

Hence, we have shown (4.1.7). When we compute the first three coefficients b̃0(a), b̃1(a) and b̃2(a), we
obtain

b̃0(a) =
aae−a

Γ(a+ 1)
, b̃1(a) = 0, and b̃2(a) = − aae−a

Γ(a+ 1)
. (4.3.4)
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Moreover, when we replace (4.3.2) in the Pearson equation(√
a+
√

2x
) d

dx
%̃(x; a) = −2

√
ax %̃(x; a), (4.3.5)

we arrive to

b̃n+1(a) =
2
√
a

(n+ 1)
√
a
b̃n−1(a)− n

√
2

(n+ 1)
√
a
b̃n(a).

By using the initial conditions (4.3.4), we find the same recurrence as in (4.3.3). Hence the function
%̃(x; a) is a solution of the Pearson equation (4.3.5).

For the limit transition between the fractional gamma density and the fractional normal density, let us
define the fractional differential equation(

Γ (
√
a+ 1)

Γ (−α+
√
a+ 1)

+
√

2xα
)

cDα%̃(x; a;α) = −2
Γ (
√
a+ 1)

Γ (−α+
√
a+ 1)

xα %̃(x; a;α). (4.3.6)

Assume that %̃(x; a;α) can be written as power series expansion

%̃(x; a;α) =
∞∑
n=0

b̃n(a;α)xnα. (4.3.7)

Then by replacing (4.3.7) in (4.3.6), we obtain the recurrence relation

b̃n(a;α) = −Γ(α(n− 1) + 1)

Γ(αn+ 1)

(√
2b̃n−1(a;α)Γ (−α+

√
a+ 1) Γ(α(n− 1) + 1)

Γ (
√
a+ 1) Γ(α(n− 2) + 1)

+ 2b̃n−2(a;α)

)
.

(4.3.8)
Since we want that b̃n(a;α) tends to b̃n(a) as α→ 1−, we decide to take the same initial conditions as
in (4.3.4). That is,

b̃0(a;α) =
aae−a

Γ(a+ 1)
and b̃1(a;α) = 0. (4.3.9)

For n = 2 and by replacing (4.3.9) in (4.3.8), we obtain b̃2(a;α) = − 2aae−aΓ(α+1)
Γ(a+1)Γ(2α+1) which tends indeed

to b̃2(a) as α→ 1−. We can then prove easily by induction that

lim
α→1−

b̃n(a;α) = b̃n(a) and lim
a→∞

√
a b̃n(a;α) =

1√
2π
an(α).

Hence, we have found the limit transition between the fractional gamma density and the fractional
normal density which is

lim
a→∞

√
a%̃(x; a;α) =

1√
2π
%(x;α).

4.4 Quasi-polynomials orthogonal with respect to fractional densities

We define a quasi-polynomial Pn of order n ∈ N with commensurate power β > 0 [32] as a polynomial
in tβ such that

Pn(tβ) = Pn,β(t) =
n∑
i=0

an,it
i β.



Section 4.4. Quasi-polynomials orthogonal with respect to fractional densities Page 25

To compute numerically the fractional integral with unit upper integration

1

Γ(α)

∫ 1

0
f(τ) (1− τ)α−1 dτ,

it has been considered in [32] the concept of orthogonality as

1

Γ(α)

∫ 1

0
Pn,β(τ ;α)Pm,β(τ ;α) (1− τ)α−1 dτ = 0, n 6= m.

Moreover, in [11] a family of nonstandard Gauss-Jacobi-Lobatto quadratures for numerical evaluation
at integrals of the form ∫ 1

−1
f ′(x)(1− x)αdx, α > −1

has been derived and applied to approximation of the usual fractional derivative. Here, we present an

algorithm that generates the sequence of quasi-polynomials orthonormal with respect to the fractional
gamma and beta densities ρ(x;α) on their corresponding supports I, extending recent results in [38] to
the fractional case. We shall consider ρ(x;α) = %(x; a;α) and I = [0,+∞) for the gamma case, and
ρ(x;α) = %(x; a, b;α) and I = (0, 1) for the beta case.

Let f, g, p ∈ L2(I), where L2(I) is the set of square integrable real-valued functions in the Lebesgue
sense over the interval I and p(x) ≥ 0. We define the inner product by

〈f, g〉p =

∫
I
f(x)g(x)p(x)dx.

A sequence of polynomials {Pn(x)}n with degPn = n, n = 0, 1, 2, . . . , is said to be orthogonal with
respect to p if

〈Pn, Pm〉p = 0, n 6= m. (4.4.1)

The following result ensures the existence of the sequence of orthogonal polynomials [4].

4.4.1 Lemma. By using the notation above, for a given weight function p ∈ L2(I), p ≥ 0, there exists
a sequence of monic orthogonal polynomials Pn(x) = xn + · · · such that (4.4.1) holds true. Moreover,
the polynomials Pn(x) can be computed by using the following three term recurrence relation

P0(x) = 1, P1(x) = x− 〈x, 1〉p
〈1, 1〉p

,

Pn+1(x) =

(
x− 〈xPn, Pn〉p

〈Pn, Pn〉p

)
Pn(x)− 〈Pn, Pn〉p

〈Pn−1, Pn−1〉p
Pn−1(x).

Let ρ(x;α) be the fractional gamma or the fractional beta density obtained in the previous sections.
Since I remains unchanged under the transformation x = tβ, we have∫

I
Pn(tβ;α)Pm(tβ;α)ρ(t;α)dt =

∫
I
Pn(x;α)Pm(x;α)ρ(x1/β;α)

x(1−β)/β

β
dx.

Let us consider

p(x) = %(x1/β;α)
x(1−β)/β

β
.
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We have p(x) > 0 on I and for all n ∈ N,
∫
I p(x)xndx ∈ R. So p is a weight function. Thus, Lemma

4.4.1 ensure that there exists a sequence of monic orthogonal polynomials Pn(x, α) such that (4.4.1)
holds true. Then, there exists a sequence of quasi-orthogonal polynomials Pn,β(x, α) with respect to
ρ(x;α).

As a consequence of some classical results in [4], we have the following lemma.

4.4.2 Lemma. Let %(x;α) be the fractional gamma or the fractional beta densities obtained in the
previous sections, and {Pn(tβ;α)} the sequence of quasi-polynomials orthogonal with respect to %(x;α).
Each orthogonal quasi-polynomial Pn(tβ;α) has exactly n real and distinct roots, all of them in I.

Let us define
Xn(β) := (1, x, x2β, . . . , xnβ)T , n ≥ 0,

and

mn(α, β) :=

∫
I
xnβ%(x;α)dx, n ≥ 0.

Let us also introduce the following matrix

Mn(α, β) :=

∫
I
Xn(β)(Xn(β))T%(x;α)dx.

of size (n+ 1)× (n+ 1), where the integral is element by element. Here, Mn(α, β) is a symmetric and
positive-definite matrix [38]. Let

Mn(α, β) = Ln(α, β)(Ln(α, β))T ,

be its Cholesky decomposition [12], where Ln(α, β) is a lower triangular matrix with nonnegative diag-
onal entries. Let us also define

Tn(α, β) := (Ln(α, β))−1, (4.4.2)

and the vector of n+ 1 quasi-polynomials

Pn(α, β) := Tn(α, β)Xn(β). (4.4.3)

Then, we have the following theorem.

4.4.3 Theorem. The sequence {Pn(α, β)}n≥0 defined in (4.4.3) satisfies the orthonormality relation∫
I
Pn(α, β)(Pn(α, β))T%(x;α)dx = In+1, (4.4.4)

where In denotes the identity matrix of size n.

Proof. Since∫
I
Pn(α, β)(Pn(α, β))T%(x;α)dx =

∫
I
Tn(α, β)Xn(β)(Xn(β))T (Tn(α, β))T%(x;α)dx

= Tn(α, β)

(∫
I
Xn(β)(Xn(β))T %(x;α)dx

)
(Tn(α, β))T

= Tn(α, β)Mn(α, β)(Tn(α, β))T

= Tn(α, β)Ln(α, β)(Ln(α, β))T (Tn(α, β))T

= Tn(α, β)Ln(α, β)(Tn(α, β)Ln(α, β))T

= In+1 by using (4.4.2).
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4.4.4 Numerical examples and conjectures. Let us consider the weight function %(x; a, b;α) defined
in (4.2.12) in the particular case α = 1/2, a = 1, and b = 2, normalized as

∫ 1
0 %(x; 1, 2; 1/2)dx = 1,

and let us fix β = 1/2. In this particular case, we can approximate the matrix M3(1, 2; 1/2, 1/2) =
M3(1/2, 1/2) as

M3(1, 2; 1/2, 1/2) =


1. 0.522651 0.305996 0.194547

0.522651 0.305996 0.194547 0.131658
0.305996 0.194547 0.131658 0.0935493
0.194547 0.131658 0.0935493 0.0691131

 ,

with Cholesky factor L3(1, 2; 1/2, 1/2) = L3(1/2, 1/2)

L3(1, 2; 1/2, 1/2) =


1. 0. 0. 0.

0.522651 0.181198 0. 0.
0.305996 0.191053 0.0390292 0.
0.194547 0.165443 0.061751 0.00893294

 .

Then, we have that P3(1, 2; 1/2, 1/2) = P3(1/2, 1/2) given by

P3(1, 2; 1/2, 1/2) =


1.

5.51883
√
x− 2.88442

25.6218x− 27.0154
√
x+ 6.27942

111.945x3/2 − 177.117x+ 84.5384
√
x− 11.7656


satisfies the orthogonality relation (4.4.4).

Similarly, we have

P3(1, 2; 0.4, 1/2) =


1

5.41862
√
x− 2.66051

24.7858x− 25.0858
√
x+ 5.49757

107.31x3/2 − 164.694x+ 75.4371
√
x− 9.92172


and

P3(1, 2; 0.6, 1/2) =


1

5.61306
√
x− 3.07125

26.3874x− 28.6843
√
x+ 6.95742

116.164x3/2 − 188.006x+ 92.4758
√
x− 13.4001

 .

Using the same arguments as in [38] and Theorem 4.4.3, we have that each row of Pn(α, β) has exactly
n real and distinct zeros on I.

By using Mathematica [42], we have performed a number of numerical experiments approximating the
zeros of the quasi-polynomials

Pm(x;α, β) = (Pn(α, β))m,

where n ≥ m. The following conjectures will be considered in future research:

1. The zeros of Pn(x;α, β) are increasing functions of α.

2. The zeros of Pn(t;α, β) are decreasing functions of β.
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3. For the fractional beta density,

(a) The zeros of Pn(t;α, β) = Pn(t; a, b;α, β) are increasing functions of a.

(b) The zeros of Pn(t; a, b;α, β) are decreasing functions of b.

4. For the fractional gamma density, the zeros of Pn(t;α, β) = Pn(t; a;α, β) are increasing functions
of a.
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Figure 4.4: Graphs of quasi-polynomials orthogonal with respect to fractional beta distribution with
n = 5, a = 1, and b = 2. On the left, for α = β = 0.5 (dashed blue) and α = 0.5, β = 0.6 (solid red).
The roots of these quasi-polynomials are 0.0208402, 0.101603, 0.273096, 0.532213, and 0.820418 for
α = β = 0.5; and 0.0275359, 0.122522, 0.306668, 0.566053, and 0.838286 for α = 0.5 and β = 0.6.
On the right, for α = 0.4, β = 0.6 (dashed blue) and α = 0.5, β = 0.6 (solid red). The roots in the
case α = 0.4 and β = 0.6 are 0.0239517, 0.112001, 0.291514, 0.55457, and 0.835314.



Section 4.4. Quasi-polynomials orthogonal with respect to fractional densities Page 29

0.2 0.4 0.6 0.8 1

-4

-3

-2

-1

1

2

3

4

0.2 0.4 0.6 0.8 1

-4

-3

-2

-1

1

2

3

4

Figure 4.5: Graphs of quasi-polynomials orthogonal with respect to fractional beta distribution with
n = 5, α = β = 1/2. On the left, for a = 1, b = 2 (dashed blue) and a = 2, b = 2 (solid red).
The roots of these quasi-polynomials are 0.0208402, 0.101603, 0.273096, 0.532213, and 0.820418, for
a = 1, b = 2; and 0.0440961, 0.151432, 0.335739, 0.581802, and 0.839372 for a = b = 2. On the
right, for a = 1, b = 2 (dashed blue) and a = 1, b = 3 (solid red). The roots in the case a = 1 and
b = 3 are 0.018028, 0.0899672, 0.249686, 0.505895, 0.808125.



5. Conclusion

Fractional calculus is an extension of classical differential calculus where the order of derivatives is not
an integer but a real number. For a long time, its theory developed only as a pure theoretical field of
mathematics. However, in the last decades, it was found in many real-world applications.

In this essay, we have introduced fractional calculus by giving some basic definitions and theorems
that appear in this field. Then we studied a real-world application of fractional calculus by solving
analytically and numerically the fractional diffusion equation with drift, this partial differential equation
which appears in some real-world applications related with anomalous super-dispersion. We found
analytically that the solution of the fractional diffusion equation with drift cannot be expressed in
terms of elementary functions. Numerically, we found that the fractional term of the fractional diffusion
equation with drift behaves as a mix of pure transport and pure diffusion, where the quantity of transport
and diffusion respectively depends on the derivative order of the fractional term in a non-trivial way.

Furthermore, we found the fractional analogues of the normal, beta and gamma distributions by solving
the fractional Pearson equation in certain cases. These analogues are called fractional normal, gamma
and beta densities. We established limit transitions between them and then we introduced weighted
orthogonal quasi-polynomials with respect to these new fractional densities.

Moreover, some conjectures about the zeros of these orthogonal quasi-polynomials were stated, conjec-
tures which we would like to consider in future research. As another future line of research, convergence
analysis for the scheme of numerical solution of the fractional diffusion equation with drift could also
be done.
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Appendix A. Python code for solving the
fractional diffusion equation

# diffusion equation with drift

# first we import relevant modules and functions.

from numpy import zeros

from numpy.linalg import solve

from scipy.special import gamma

from numpy import linspace

# We give initial conditions f(x) to initialize C_0

# one initial condition can be the normal density of

# mean mu and standard deviation sigma

def f(x, sigma, mu):

y = (1.0/(sigma * sqrt(2*pi)))*exp(-((x-mu)/sigma)**2)

return y/max(y)

#another one can be f(x) = 1 - 1_{0}(x)

def f(x):

H = zeros([len(x)])

H[50:] = 1

return H

#We define our algorithm to solve the fractional diffusion equation.

def Numeric(M, N, E, B, alpha, C0):

# We initialize C as a null matrix of size (M+1)x(N+1)

C = zeros([M+1, N+1])

# We initialize its first column

C[:,0] = C0

# we initialize A as a null matrix of size (M+1)x(M+1)

A = zeros([M+1, M+1])

# we initialize g as a null vector of size (M+1)

g = zeros([M+1])

# since g(0) = 1 and g(1) = -\alpha, we replace it also in g.

g[0] = 1

g[1] = - alpha

# So for the rest of value of the vector g, we replace it by using the

# formula in the essay.

for k in range(2,M+1):
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# in python, for k >= 171, \gamma(k) = \infinity.

if k<170:

g[k] = gamma(k - alpha)/ (gamma(- alpha)*gamma(k+1)*1.0)

else:

g[k] = 0

# end for

# now we fill the matrix A as follow:

for i in range(1,M):

if alpha == 1:

A[i,i ] = 1 + E - B

A[i,i-1 ] = -E + B

elif alpha == 2:

A[i,i+1 ] = -B

A[i,i ] = 1 + E + 2*B

A[i,i-1 ] = -E - B

else:

A[i,i+1 ] = -g[0]*B

A[i,i ] = 1 + E - g[1]*B

A[i,i-1 ] = -E - g[2]*B

for j in range(1,i-1):

A[i,j] = -g[i-j+1]*B

# end for

#end if

# end for

A[0,0] = 1

A[0,1:] = 0

A[M,:M] = 0

A[1:,0] = 0

A[:M-1,M] = 0

A[M,M-1] = -1

A[M,M] = 1

# We fill the matrix C

# since we want C_{M}^{n+1} = C_{M-1}^{n+1}, then for each value of j, we

# keep C^j in C then we create a new vector CC which is the vector C^j in

# which we replace the last position by $0$. That vector CC helps us to

# compute C^{j+1} by solving A C^{j+1} = CC

for j in range(1,N):

CC = zeros([M+1])

CC[: -1] = C[:-1,j-1]

C[:,j] = solve(A,CC)

# end for

return(C)

if __name__==’__main’:

M = 1000 #Number of division in space
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N = int(2.5*M) #Number of division in time

plotFontsize = 15.5

L = 0.0

R = 1.0

T = 1.0

v = 0.5

D = 0.1

mu = 0.3

sigma = 0.05

X0 = linspace(L, R, M+1)

T0 = linspace(0, T, N+1)

h = (R - L)/M*1.0

tau = T/N*1.0

vectalpha = linspace(1, 2, 5)

for i in range(len(vectalpha)):

alpha = vectalpha[i]

E = v*1.0*tau/h

B = D*1.0*tau/(h**alpha)

#C0 = f(X0,sigma, mu)

C0 = f(X0)

C = Numeric(M, N, E, B, alpha, C0)

clf()

L0 = plot(X0,C[:,0])

L1 = plot(X0,C[:,0.2*N])

L2 = plot(X0,C[:,0.4*N])

L3 = plot(X0,C[:,0.6*N])

legend((’t = 0’,’t = 0.2’,’t = 0.4’,’t = 0.6’),fontsize=plotFontsize,

loc = ’upper right’)

title(r’alpha = %0.3f’%(alpha), fontsize=plotFontsize)

xlabel(’Spatial coordinate, x’,fontsize=plotFontsize)

ylabel(’Concentration, C(x,t)’,fontsize=plotFontsize)

setp(gca().get_xticklabels(),fontsize=plotFontsize)

setp(gca().get_yticklabels(),fontsize=plotFontsize)

savefig(’.../Bdiffusion_drift_alpha-%0.3f.pdf’ %(alpha))
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