
Reinforcement Learning for Routing, Modulation And Spectrum

Assignment Problem in Elastic Optical Networks

Junior Momo Ziazet(junior.ziazet@aims-cameroon.org)
African Institute for Mathematical Sciences (AIMS)

Cameroon

Supervised by: Prof. Brigitte Jaumard

Concordia University, Canada

December 20, 2019

Submitted in Partial Fulfillment of a Cooperative Masters Degree in Industrial Mathematics at AIMS-Cameroon

Abstract

Global Internet traffic will continue to grow at high speed in the forthcoming years. To be able to
meet this continuous and rapid growth, network operators are moving towards a new technology named
Elastic Optical Network (EON). With EONs, unfortunately, the flexible resource allocation mechanisms
makes the corresponding service provisioning designs more complicated in terms of network control and
management, hardware development and spectrum management. To fully exploit the benefits of such
flexibilities and realize cost-effective EON, researchers have intensively investigated the Routing, Mod-
ulation and Spectrum Allocation (RMSA) problem for EONs using algorithms based on either heuristic
algorithm, Integer Linear Programming or genetic algorithm. However, those works only apply fixed
RMSA policies or rely on simple empirical policies based on manually extracted features and therefore
are unable to achieve real adaptive provisioning in EONs. Motivated by the success of several recent
proposed Reinforcement Learning (RL) based approaches solving optimization combinatorial problems,
we proposed a Reinforcement Learning based RMSA framework that can learn successful policies from
static network operations. We implemented Deep Q-Network, REINFORCE and Advantage Actor-Critic
(A2C) methods by parameterizing the policies with a convolutional neural networks (CNNs) that can
sense complex EON states. The optimization target of each of the models at each step of servicing
a request was to maximize a cumulative reward (total throughput in our case) within the rest of the
episode. We test the models on 4 large-sized EONs topologies and the experimental results show that
the proposed algorithms provide good solutions, with great generalization capability on different traffic
matrices and types. REINFORCE provided the best results and achieved granted average throughput
of 96% in the worst situation and 100% on some topologies for different traffic matrices and rate
distribution.

Keywords: Elastic Optical Networks, Optical Routing, Modulation and Spectrum management, Rein-
forcement Learning, Convolutional Neural Networks.

Declaration

I, the undersigned, hereby declare that the work contained in this essay is my original work and that any
work done by others or by myself previously has been acknowledged and referenced accordingly.

Junior Momo Ziazet, 20 Dec 2019.

i

Contents

Abstract i

1 Introduction 1

1.1 Background . 1

1.2 Problem . 2

1.3 Research Objective and Contributions . 3

1.4 Thesis Organization . 4

2 Literature Review and Fundamentals 5

2.1 Reinforcement Learning . 5

2.2 Deep Reinforcement Learning . 9

2.3 EONs Provisioning Strategies . 16

2.4 Related Works . 19

3 Proposed Reinforcement Learning Framework for RMSA Problem 20

3.1 Mathematical Formulation of the Offline RMSA Problem 20

3.2 Method Description . 23

3.3 Reinforcement learning framework . 26

3.4 Baseline Algorithm: a Heuristic Approach . 30

4 Experiments and Results 32

4.1 Experimental Setup . 32

4.2 Data Preparation . 36

4.3 Quantitative Evaluation . 37

4.4 Qualitative Evaluation . 39

Conclusion and Future Works 41

A Some additional data 42

Acknowledgements 45

References 48

ii

List of Figures

1.1 Example of RSA problem: (a) network topology and (b) the routed demands. (c)
Spectrum allocation in each link. (extracted from [34]). 2

1.2 RSA Constraints. 3

2.1 Agent, environment interaction (adopted from [29]). 5

2.2 The agent-environment interaction in an MDP (extracted from [29]). 6

2.3 Biological neuron (left) vs. artificial neuron (right). The artificial neuron models the
dendrites as weighted inputs and processes the sum through an activation function f
(extracted from [14]). 10

2.4 To illustrate a typical architecture for CNN, the LeNet-5 [17] is presented. It recognizes
digits on images. The input image is processed by two stacks of Convolutional Layers,
each followed by a subsampling Pooling Layer. The last three layers are fully-connected
to map the high-level features to the final digit classification. 11

2.5 Convolution process. 12

2.6 A max-pooling filter of size [2× 2] with a stride of 2 is applied to a 2- dimensional input
with the size [4× 4]. The maximum value remains in the output and the output size is
reduced by 4 (extracted from [14]). 12

2.7 Agent-environment interaction in REINFORCE (inspired from [10]). 15

2.8 Actor-Critic learning process (inspired from [29]). 16

2.9 Wavelength Division Multiplexing (WDM (extracted from [24]). 17

2.10 Fix and flexible frequency grids. 17

2.11 ITU-T G.694.1 Flexible Grid Architecture (extracted from [28]). 18

2.12 Encoded bits per symbol and data constellations for common modulation formats (ex-
tracted from [22]). 18

3.1 Provisioning example. 21

3.2 Schematic representation of the RMSA-RL operation. 23

3.3 Steps to Solve the Problem. 23

3.4 Root and Spur Representation. 25

3.5 Proposed RMSA Environment Architecture. 26

3.6 Proposed State Representation. 27

4.1 CONUS Network Topology. 33

4.2 USA Network Topology. 33

iii

4.3 NTT Network Topology. 34

4.4 GERMANY Network Topology. 34

4.5 Number of slots per modulation and data rate. 36

4.6 Moving Average Episode Reward of the Three different methods on each of the topology. 38

4.7 Spectrum Usage: X-axis represents the links and the Y-axis the frequency slots, it starts
from the up to the bottom. 40

List of Tables

3.1 Terminology and notation of the mathematical formulation. 22

3.2 Distance-Modulation principle. 25

3.3 Convolutional Neural Network Architecture (DQN). 29

3.4 Convolutional Neural Network Architecture (REINFORCE). 29

3.5 Convolutional Neural Network Architecture (Actor-Critic). 30

4.1 Key topology characteristics. 32

4.2 Bit-rate distribution: Uniform rate traffic. 35

4.3 Bit-rate distribution: Non-uniform rate traffic. 35

4.4 Three first requests on CONUS training demand Preparation. 37

4.5 Training time. 38

4.6 Average Test result on non uniform rate traffic. 39

4.7 Average Test result on uniform rate traffic. 39

v

Acronyms

A2C Advantage Actor-Critic.

AFA-CA Adaptive Frequency Assignment with Collision Avoidance.

AI Artificial Intelligence.

AIMS African Institute for Mathematical Sciences.

BLSA Balanced Load Spectrum Allocation.

CAGR Compound Annual Growth Rate.

CNN Convolutional Neural Network.

CPU Central Processing Unit.

DNN Deep Neural Network.

DQN Deep Q-Network.

EB ExaBytes.

EON Elastic Optical Network.

GB Giga Bytes.

Gbps Giga bit per sencond.

GERAD Group for Research in Decision Analysis.

GHz Giga Hertz.

ILP Integer Linear Programming.

IP Internet Protocol.

ITU International Telecommunication Union.

IVADO Institute for Data Valorisation.

MC Monte Carlo.

MDP Markov Decision Process.

OSNR Optical Signal to Noise Ratio.

QAC Q Actor-Critic.

QAM Quadrature Amplitude Modulation.

QoT Quality of Transmission.

vi

RAM Random Access Memory.

RL Reinforcement Learning.

RMSA Routing Modulation and Spectrum Assignment.

RSA Routing and Spectrum Assignment.

SARSA State Action Reward State Action.

SDG Stochastic Gradient Descent.

SPSR Shortest Path with maximum Spectrum Reuse.

TB TeraBytes.

TD Temporal Difference.

WDM Wavelength Division Multiplexing.

ZB Zeta Bytes.

1. Introduction

From the youngest to the oldest, from small metropolitan areas to large ones, from private to public
companies, from the informal to the formal sector, today everyone is moving towards the new Information
and Communication Technologies (ICT). This is mostly due to the fact that, Nowadays, communication
networks play an undeniably crucial role in our daily lives. From the perspective of companies aiming to
gain competitive advantage up to the efficiency of administrations and public services such as health,
education, security, the effect of ICT become more tangible as our society grows. In such a demanding
context, high-speed and flawless service to users is of vital importance. Therefore, one of the main
concerns of network operators is the efficient use of network resources to be able to efficiently meet the
continuous and rapid growth of the user needs. Fortunately, Elastic Optical Network (EON) [12, 6] has
proven to be a promising candidate for future high-speed optical communication because of its ability
to efficiently allocate spectrum by allowing finer grid spacing, resulting in sub-streams called frequency
slots.

With such a technique, unfortunately, the flexible resource allocation mechanisms in EON, makes the
corresponding service provisioning designs more complicated in terms of network control and manage-
ment, hardware development, and spectrum management. The purpose of this piece of work is an
attempt to optimize the usage of resources (in terms of optical fiber and spectrum occupation) so
that we fully exploit the benefits of such flexibilities and realize cost-effective EON. We achieve this by
developing new Artificial Intelligence (AI) based algorithms and specifically reinforcement learning that
are designed to achieve real adaptive provisioning in EON. In the following sections, we will provide the
context and the description of the problem as well as where our contribution will sit, and this will be
followed by the plan of the thesis.

1.1 Background

At the end of July 2019, the number of internet users is estimated at 4,536,248,808 which represents
58.8% of the global population, a 7.7% growth as compared to the last year [7]. Estimates suggest
that annual global IP traffic will reach 4.8 Zetabytes (1ZB= 230TB) per year by 2022, or 396 exabytes
(EB) per month. In 2017, the annual run rate for global IP traffic was 1.5 ZB per year or 122 EB
per month. The Overall, IP traffic will grow at a Compound Annual Growth Rate (CAGR) of 26%
from 2017 to 2022 and globally, busy hour (or the busiest 60 minute period in a day) Internet traffic
will increase by a factor of 4.8 between 2017 and 2022, and average Internet traffic will increase by a
factor of 3.7[5]. This continuous growth of traffic, nourished by the rise of new applications, including
multimedia streaming services, cloud computing, inter data-center networking, can only be met with
greater efficiency, flexibility, and scalability provided by flexible or elastic optical networks.

EONs are widely considered as the next-generation optical networks. This because historical data
suggests that we are at the edge of surpassing the capacity of the traditional Wavelength Division Mul-
tiplexing (WDM) networks that have been used so far. Different from WDM that has a 100Gb/s fixed
channel grid and wavelengths (channels) that has a 50 GHz width as recommended by the International
Telecommunication Union (ITU) [11], EON provides flexible grid channel that supports variable band-
width channels where bandwidth can be allocated in 12.5 GHz increments per wave and each wave’s
center frequency can be assigned as needed. This mechanism allows for serving high bit-rate requests
as big as 400Gb/s and 1Tb/s (this was impossible with WDM). (See Section 2.3).

1

Section 1.2. Problem Page 2

EONs further improve the spectrum utilization with consideration of adaptive modulation. Indeed, the
modulation based EONs can reduce the allocated spectral bandwidth for shorter paths by increasing
the number of modulated bits per symbol [40]. As a result, flexible network utilization efficiency is
greatly improved compared to WDM based optical networks. More details on modulation are provided
in Section 2.3.

With elastic optical networks, the challenge is on optimizing the spectrum usage through the so-called
Routing Modulation and Spectrum Assignment (RMSA) problem.

1.2 Problem

In EONs, any demand or request is characterized by three factors namely the source, the destination,
and the bit-rate. Given a network topology, The Routing and Spectrum Assignment (RSA) problem is
defined as the problem of establishing connections for each request that has to be served (see Figure
1.1) by selecting:

• An appropriate routing path from the source node to the destination node,

• An available spectrum allocation on every link of the selected path.

Figure 1.1: Example of RSA problem: (a) network topology and (b) the routed demands. (c) Spectrum
allocation in each link. (extracted from [34]).

The most common objective are:

• Maximize the network throughput, which is defined as the summation of the rates of all granted
requests,

• Minimize the total amount of spectrum usage.

The established connections have to satisfy the following constraints (see Figure 1.2):

• Non-overlapping: A frequency slot can be assigned to only one request on a given fiber link,

• Continuity: The same channels or frequency slots are assigned to all the path links of a request,

• Contiguity: The assigned slots have to be contiguous (adjacent to each other) in the frequency
domain.

Section 1.3. Research Objective and Contributions Page 3

Figure 1.2: RSA Constraints.

The Routing, Modulation and Spectrum Assignment (RMSA) problem is an extension of RSA,
where the additional requirement of selecting the required modulation format among the available ones
is added.

1.3 Research Objective and Contributions

In the following sections, we first describe our objectives for the problem stated in Section 1.2, then
present our contributions to this thesis.

1.3.1 Objective.

Our main objective in this thesis is to design an intelligent agent with a global vision on the network’s
activities, and great adaptability, that will perform the provisioning tasks. As an exploratory project, we
want to see whether reinforcement learning can be used to improve the heuristic-based method used
in the most popular and heavily optimization algorithms that only apply fixed RMSA policies or rely
on simple empirical policies based on manually extracted features and therefore are unable to achieve
real adaptive provisioning in EONs. This was motivated by the success of several recently proposed
Reinforcement Learning (RL) based approaches to solve optimization combinatorial problems. One of
the advantages of the RL methods is that they do not require prior knowledge of the underlying system
dynamics and the system designer is free to choose reward metrics that best match the final objective.

1.3.2 Contributions.

The contribution of the thesis includes:

• Proposing a heuristic algorithm that will be used as a baseline. This heuristic achieves very good
solutions with remarkably high granted average throughput of 100% on the testing scenarios,

• Proposing a new feature engineering representation that provides relevant information to the RL
agent,

• Designing a simulator of the network provisioning scenario in EONs that was used as the environ-
ment in with the RL agent evolves,

Section 1.4. Thesis Organization Page 4

• Designing an RL agent with great adaptability that finds a near-optimal policy to provision the
request in a large-scale RMSA problem with static traffic. The REINFORCE agent achieved a
granted average throughput of 96% in the worst situation and 100% on some topologies for
different traffic matrices and rate distribution.

1.4 Thesis Organization

In this chapter, we started with an introduction to the subject area and scope of research. Thereafter,
we introduced the specific problem; RMSA problem and motivated our choice of the proposed approach;
reinforcement learning. We have also outlined in the previous section the objectives of this study as well
as our contribution. Given this introduction, latter parts of the work are structured as follows:

Chapter 2 presents the preliminary materials and a literature review on the related subjects. Starting
with a brief introduction to the concepts and fundamentals behind RL and Deep-RL, we will then proceed
by a short review of EONs. The notion of spectrum slots and Modulations will be discussed, followed
by an examination of the works in the Literature that will lead to the resolution of the RMSA Problem.

Chapter 3 will state the RMSA problem as well as the mathematical formulation of it. This will be
followed by a general description of the entire proposed RL framework as well as the description of the
heuristic baseline algorithm.

Chapter 4, finally, conducts a numerical analysis of the performance of the designed algorithms in the
previous chapters, as well as the characteristics of the solutions.

This thesis will be ended with a conclusion as well as the statement of future lines of research.

2. Literature Review and Fundamentals

In this chapter, we introduce concepts and fundamentals behind RL and EONs. We first study the
different elements of RL and present some RL algorithms. Then, we review the studies on provisioning
strategies in EONs followed by the works done in the literature to solve the RMSA problem.

2.1 Reinforcement Learning

Machine learning is a subarea of artificial intelligence that study how computer algorithms can learn from
data and improve their performance in making predictions and decisions. Reinforcement learning (RL)
is one of the three basic machine learning paradigms, alongside supervised learning (task of learning
a function that maps an input to an output based on example input-output pairs) and unsupervised
learning (task that helps find previously unknown patterns in data without pre-existing labels) that is
concerned with making sequences of decisions [13].

RL is the task of deciding from experience, the sequence of actions to perform in an uncertain envi-
ronment in order to achieve some goals. In other words, RL is learning what to do and how to map
situations to actions so as to maximize a numerical reward signal. The learner (that we call here agent)
is not told which actions to take but instead must discover which actions yield the most reward by
trying them [29]. As shown in Figure 2.1, It considers an agent situated in an environment: at each
time step, the agent observes the state of the environment and takes an action, then the agent receives
a reward which is a measure of the consequence of its action. The environment changes into a new
state. Using the experience gathered, the goal of the artificial agent is to learn how to take actions in
order to optimize some objectives given in the form of cumulative rewards.

Figure 2.1: Agent, environment interaction (adopted from [29]).

2.1.1 Markov Decision Processes.

The interaction between the agent and its environment is described using ideas from dynamical systems
theory, specifically, as a discrete-time stochastic control process (a Markov Decision Process (MDP) [2]
in this case).

Definition 1. The MDP consists of a tuple of 5 elements (S,A, T,R, γ) where:

• S is the state space. At each time step t, the agent receives some representation St ∈ S of the
environment’s state.

5

Section 2.1. Reinforcement Learning Page 6

• A is the action space. At each time step t, based on its observation of the state, the agent selects
an action At ∈ A(s), where A(s) is the set of allowed actions of state s.

• T : S × A × S −→ [0, 1] is the transition function, defined by a set of conditional transition
probabilities p(St+1 | St, At) between states. They describe how the environment state changes
(when in a state St the agent performs an action At, it finds itself in a new state St+1).

• R : S × A × S −→ R is the reward function where R ⊂ R is the set of possible rewards. After
performing an action, one-time step later, as a consequence of its action, the agent receives a nu-
merical reward Rt+1 ∈ R. This is represented by the reward model p(Rt+1 | St, At) that describes
the real-valued reward value that the agent receives from the environment after performing an
action. The reward signal is the primary basis for altering the policy; if an action selected by the
policy is followed by a low reward, then the policy may be changed to select some other action in
that situation in the future.

• γ ∈ [0, 1) is the discount factor that controls the importance of future rewards. It has to be less
than 1 so that the cumulative reward is bounded in the infinite horizon reward model. Making
γ = 0 makes the agent being concerned only with maximizing the immediate rewards.

Definition 2. A discrete-time stochastic control process is Markovian (meaning that it has the Markov
property) if:

p(St+1 | St, At, . . . , S0, A0) = p(St+1 | St, At), and (2.1.1)

p(Rt+1 | St, At, . . . , S0, A0) = p(Rt+1 | St, At). (2.1.2)

The Markov property means that the future of the process only depends on the current state, and the
agent has no interest in looking at the full history, meaning that the current state and action capture
all relevant information from the history and provides sufficient information to describe the distribution
of immediate reward and next state.

Figure 2.2 represents the interaction of the agent and the environment in a Markov decision process as
described above.

Figure 2.2: The agent-environment interaction in an MDP (extracted from [29]).

It is important to precise that we use Rt+1 instead of Rt to denote the reward due to action At because
it emphasizes that the next reward and the next state Rt+1 and St+1, are jointly determined.

Section 2.1. Reinforcement Learning Page 7

2.1.2 Discounted Expected Reward.

When training an effective agent, the goal is to find a policy π, that maps perceived states of the
environment to actions to be taken when in those states in order to maximize the total amount of
reward it receives in the long run term instead of just caring about the immediate return. This expected
value of the accumulated discounted reward from time-step t is called discounted return and according
to [29] is given by:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1 (2.1.3)

The discount factor γ determines the present value of future rewards.

2.1.3 Policy and Value Functions.

Definition 3. A policy π tells the agent how to behave. It models a probability distribution π(a | s) over
the number of available actions a ∈ A(s) for each state s, meaning that π(At | St) is the probability of
taking action At in state St.

Definition 4. A value function of a state s under a policy π denoted Vπ(s), is an estimate of how good
it is for the agent to be in state s. Vπ(s) is the expected return when starting in s and following the
policy π. For MDPs, [29] defines Vπ : S −→ R by:

Vπ(s) = Eπ[Gt | St = s] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s

]
, for all s ∈ S, (2.1.4)

where E[.] denotes the expected value of the random variable given that the agent follows the policy π,
and t the time step.

The equation (2.1.4) can be formulated recursively as shown in equation (2.1.8). This recursive form is
called Bellman equation for Vπ, in this equation (2.1.8), the value of the state s is only dependent on
the next possible states s′ while each state is weighted by the transition probability p(s′ | a, s).

Vπ(s) = Eπ[Gt | St = s] (2.1.5)

= Eπ [Rt+1 + γGt+1 | St = s] (2.1.6)

=
∑
a

π(a | s)
∑
s′

p(s′ | s, a)
[
R(s′ | s, a) + γEπ[Gt+1 | St+1 = s′]

]
(2.1.7)

=
∑
a

π(a | s)
∑
s′

p(s′ | s, a)[R(s′ | s, a) + γVπ(s′)] (2.1.8)

In addition to the V-value function, the value of taking action a in the state s under policy π, denoted
by Qπ(s, a), is defined as the expected return starting from s, taking the action a, and thereafter and
is called Q-value function. It estimates how good it is to take action a in state s. According to [29],
the Q-value function Qπ : S × A −→ R is defined as follows:

Qπ(s, a) = Eπ[Gt | St = s,At = a] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s,At = a

]
for all s ∈ S and a ∈ A.

(2.1.9)

Section 2.1. Reinforcement Learning Page 8

Reinforcement learning aims to find an optimal policy π?. According to [29], a policy π is better than
another one π′, (we note π > π′) if the value function of the policy π is better than the one of π′

(Vπ(s) > Vπ′(s)) for all s ∈ S. The optimal state-value function V ? can be defined as follows:

V ?(s) = max
π

Vπ(s), for all s ∈ S. (2.1.10)

Similarly to V-value function, the optimal Q-value function Q?(s, a) is defined as

Q?(s, a) = max
π

Qπ(s, a), for all s ∈ S and a ∈ A, (2.1.11)

= E
[
Rt+1 + γV ?(s′) | St = s,At = a

]
. (2.1.12)

The optimal value- and action-value functions are connected by the following equations:

V ?(s) = max
a∈A

Q∗(s, a), s ∈ S. (2.1.13)

The particularity of the Q-value function as compared to the V-value function is that the optimal policy
can be obtained directly from Q?(s, a) as:

π?(s) = arg max
a∈A

Q?(s, a). (2.1.14)

2.1.4 Reinforcement Learning Algorithms.

a) Learning approaches

• Monte Carlo Approach (MC): This approach is defined only for episodic tasks meaning
that we assume experience is divided into episodes, and that all episodes eventually terminate
no matter what actions are selected. In such an approach, the value estimates Vπ(St) are
computed only at the end of the episode. So the policies changed just after the completion
of an episode, see equation (2.1.15). Hence, to estimate the value function from experience,
Monte Carlo methods sample and average returns for each state-action pair. An important
fact about Monte Carlo methods is that the estimates for each state are independent; the
estimate for one state does not build upon the estimate of any other state. Monte Carlo
methods are particularly attractive when one requires the value of only one state or a subset
of states. The simplest Monte Carlo makes the update as follows:

V (St)←− V (St) + α[Gt − V (St)], (2.1.15)

where Gt is the actual return following time t, and α a constant step-size parameter.

• Temporal Difference Learning Approach (TD): The Temporal Difference approach, on
the other hand, will not wait until the end of the episode to update the maximum expected
future reward estimation: it will update its value estimation for the non-terminal states
occurring at that experience. The simplest TD method makes the update immediately on
the transition to St+1 and receiving Rt+1. In effect, the target for the Monte Carlo update
is Gt, whereas the target for the TD update is Rt+1 + γV (St+1):

V (St)←− V (St) + α[Rt+1 + γ.V (St+1)− V (St)]. (2.1.16)

b) Learning algorithms

Section 2.2. Deep Reinforcement Learning Page 9

• Q-learning is an off-policy, model-free value-based reinforcement algorithm. Off-policy
means that the agent estimates the return for state-action pairs following a different policy
from the current policy that was used to take the action. Model-free means that the algo-
rithm estimates the optimal policy without using or estimating the dynamics (transition and
reward functions) of the environment. In contrast, model-based algorithm uses the transition
function (and the reward function) in order to estimate the optimal policy. As explained in
[29], Q-learning algorithm finds the agent update its Q-function using rewards as follows:

Qπ(st, at) = Qπ(st, at) + α[Rt+1 + γ.max
a

Q(st+1, a)−Qπ(st, at)], (2.1.17)

where α is the learning rate. Low values for α increases the accuracy of learning but slows
down the convergence.

• SARSA (State Action Reward State Action) is an on-policy, model-free algorithm value-
based method. On-policy means that the agent estimates the return for state-action pairs
assuming that the current policy continues to be followed. This process is commonly de-
scribed by the equation (2.1.18):

Qπ(st, at) = Qπ(st, at) + α[Rt+1 + γ.Qπ(st+1, at+1)−Qπ(st, at)], (2.1.18)

where at+1 is the action that the agent should take at the next time step following the policy
π.

2.2 Deep Reinforcement Learning

All the RL algorithms described in section 2.1.4 have a tabular setting, leading to essential disadvantages.
The usage of a table limits the approaches to tasks with a low number of states and actions. In real-world
problems, the state space can quickly get large. It is not feasible to visit all possible states to retrieve the
value for all action-state pairs. Furthermore, the size of the table is limited due to memory constraints
in hardware. To overcome the mentioned restrictions, a common approach is to replace the value table
with a Deep Neural Network as a function approximator. Their ability to approximate nonlinear func-
tions and to extract relevant features from raw inputs makes it possible to generalize over unseen states.

2.2.1 Artificial Neural Networks.

An artificial neuron (also called perceptron) models the biological neuron in a simplified way. Each
artificial neuron has n input connections. The neuron processes the inputs by taking the weighted sum,
adding a bias b and applying an activation function: f(

∑n
i θixi + b). Figure 2.3 illustrates the parallels

of a biological and an artificial neuron.

The commonly used activation functions are: sigmoid, tanh and ReLu and are respectively given by the
following equations (2.2.1), (2.2.2), and (2.2.3):

sigm(x) =
1

1 + e−x
, (2.2.1)

tanh(x) = 2.sigm(2x)− 1, (2.2.2)

ReLu(x) = max(0, x). (2.2.3)

Section 2.2. Deep Reinforcement Learning Page 10

Figure 2.3: Biological neuron (left) vs. artificial neuron (right). The artificial neuron models the
dendrites as weighted inputs and processes the sum through an activation function f (extracted from
[14]).

The goal of the learning process is to find a parameter set θ and b that results in the best possible
function approximation. In supervised learning, the true output Y of the input X is given and can be
used to update the parameters θ and b. It is an iterative process, consisting of the following steps:

Step 1. Forward Pass: The input X is forwarded through the network and one gets the predicted output
Ypred = f(X,Y, L).

Step 2. Loss: The predicted output Ypred is compared to the true output Y by computing the loss L(θ).
The choice of loss depends on the learning task. Relevant loss functions are :

• Mean-square-error [27] used for regression problems: It computes the L2-distance square
between Ypred and Y ;

L(θ) =
1

2m

m∑
i=1

(Yi − Ypred,i)2. (2.2.4)

• Cross-entropy Loss function [27] used for classification problems.Given by

L(θ) = − 1

m

m∑
i=1

c∑
j=1

Y
(j)
i logY

(j)
pred,i. (2.2.5)

In equation (2.2.4) and (2.2.5), m represents the number of input and c the size of the
output (number of classes).

Step 3. Back-propagation and Update: The global gradient of loss ∇θL(θ) is computed and back-
propagated through the network. Hence, the weights of all neurons are updated. A common
optimizer is stochastic gradient descent (SDG). Gradient descent changes the weights in the
negative direction of the gradient of loss so that the function approximation approaches closer
to the minimum in each iteration. Equation (2.2.6) shows the corresponding update rule of
gradient descent. α is the learning rate parameter that defines how quickly the minimum should
be approached.

θt+1 = θt − α∇θtL(θ). (2.2.6)

Other most used optimizers are: Adam, RMSProb, Ada-grad, Adadelta (more details in [14]).

Section 2.2. Deep Reinforcement Learning Page 11

2.2.2 Convolutional Neural Networks.

Convolutional Neural Networks (CNN) can be seen as an artificial neural network particularly adapted
to 2D and 3D signal or data processing. CNNs were inspired by Hubel and Wiesel’s work [9] in the
receptive field in the brain, that processes sensor input data and is sensitive to certain stimuli, e.g.,
edges in the visual system. They handle large input data efficiently and are consequently widely used
in state-of-the-art approaches in the fields of Computer Vision like e.g. object detection [25, 26, 18] or
image segmentation [21, 8].

Figure 2.4 shows the LeNet-5 [17] that recognizes digits in images. It provides a typical architecture of
CNN, consisting of stacks of Convolutional Layers, followed by a subsampling Pooling Layer. The final
hidden layers of the network are normally fully-connected to compute the final low-dimensional output
of the network. It can be assumed that in the early stages of the network low-level features like edges
and corners are learned, while in later layers those features are combined to high-level features.

Figure 2.4: To illustrate a typical architecture for CNN, the LeNet-5 [17] is presented. It recognizes
digits on images. The input image is processed by two stacks of Convolutional Layers, each followed by
a subsampling Pooling Layer. The last three layers are fully-connected to map the high-level features
to the final digit classification.

• The Convolutional Layer builds on the discrete convolution operation, that applies a filter
f of the size [w × h] (its values represent the weights θ of the neural network) to an input
matrix X of size [W ×H] at position [i, j] by computing the dot product. The output is of size
[W − w + 1×H − h+ 1]. Considering the notation X l[i, j], where X[i, j] is the element of the
input matrix X at the position [i, j] at the output of the layer l and θ[i, j] the weight at position
[i, j] on the filter f . The convolution operation is given by the discrete cross-correlation shown in
equation (2.2.7) and Figure 2.5.

X l[i, j] =
w−1∑
u=0

h−1∑
v=0

θ[u, v].X l−1[i+ u, j + v] (2.2.7)

To produce an output that has the same size as the input, a technique called zero padding can
be applied. Zero padding extends the input matrix by adding zero-values on each input’s side. It
is common to shift the filter with a constant stride S over the input so that every Sth position
of the input will be convolved. It results in a reduction of the data size in the next layer.

• Pooling Layer : The Pooling Layer has a sub-sampling function in the spatial dimensions width
and height by applying a down-sampling filter to the input. Common pooling filters are max-
and average-pooling. At max-pooling, a filter of size [w × h] slides over the input and only the

Section 2.2. Deep Reinforcement Learning Page 12

Figure 2.5: Convolution process.

maximum value remains in the output. Figure 2.6 provides an example: A [2× 2]- filter is shifted
over the 2-dimensional input with a stride of 2. The resulting output size is a quarter of the input
size. In average-pooling, the average of each position [x, y] and its neighbors is computed by the
filter.

Figure 2.6: A max-pooling filter of size [2 × 2] with a stride of 2 is applied to a 2- dimensional input
with the size [4 × 4]. The maximum value remains in the output and the output size is reduced by 4
(extracted from [14]).

• Fully Connected Layer Finally, after several layers of convolution and pooling, the high-level
reasoning in the neural network is done via fully connected layers. In CNN, each layer acts as
a detection filter for the presence of specific characteristics or patterns present in the original
data. The first layers of a convolution network detect characteristics that can be recognized and
interpreted relatively easily. Subsequent layers increasingly detect more abstract characteristics.
The last layer of the convolution network is able to do an ultra-specific classification by combining
all the specific characteristics detected by the previous layers in the input data.

2.2.3 Value-Based Methods.

Value-based methods are more interested in ”Value”, which as explained in Section 2.1.3 estimates the
expected reward for different actions given the initial states or simply the expected reward for different
states. The idea is to replace the value table one-to-one and to approximate it with a Deep Neural
Network (DNN). The DNN output provides the estimated value for each possible action.

Deep Q-Network (DQN)

deep-Q-Network (DQN) is an approach presented in 2015 by the DeepMind group [20] that showed
great success. This approach combines Q-Learning with Deep Neural Networks. As input data, high-
dimensional raw sensory input with no previously hand-crafted features are used. And the neural network
end-to-end architecture extracts relevant features by itself. The output of the Q-network provides the

Section 2.2. Deep Reinforcement Learning Page 13

estimated values of the possible discrete actions. This allows one to determine the best action for a
given state with a single forward pass. This approach encountered a problem of unstable learning that
has been solved with an additional mechanism called experience replay.

The idea of experience replay is to store the agent’s experiences St, At, Rt+1, St+1 in a buffer that can
hold Nbuffer experiences in total. In each training step, a batch m of experiences is randomly sampled
from the buffer and fed to the network. Hence, experience replay removes the correlations in the data
sequences and feeds the network with independent data.

In DQN the network is updated using the equation (2.2.6) according to the loss function from equation
(2.2.8).

L(θ) =
1

m

m∑
i=1

Li(θi), (2.2.8)

where Li(θi) = (Rt+1 + γ.max
a

Q(st+1, a, θi)−Q(st, at, θi))
2. (2.2.9)

In the equation (2.2.9), Rt+1 + γ.maxaQ(st+1, a, θi) represents the target value and Q(st, at, θi) the
output of the DQN.

There exist many other variants of DQN like Double DQN [32] and Dueling DQN [36] that have not
been studied in this thesis.

2.2.4 Policy Gradient Methods.

The goal of the policy gradient method is to directly optimize the policy function π(a | s, θ) instead
of learning a value function and choosing the actions based on it. The quality of each policy can be
measured by the policy’s performance measure J(θ). The objective function of this method in equation
(2.2.10) maximizes the scalar value J(θ).

θ? = argmax
θ
J(θ). (2.2.10)

The policy’s parameter θ is updated via gradient ascent. Gradient ascent is the inverse of gradient
descent and updates the parameters θt in the positive direction of the gradient of the policy’s performance
measure ∇θJ(θ) (see equation (2.2.11)). Furthermore, the learning rate α defines, how strongly one
step is in the gradient’s direction.

θt+1 = θt + α∇θJ(θt). (2.2.11)

Compared to the value-based method, the advantages of Policy Gradient Methods can be resumed as
follows:

• Policy Gradient Methods have stable convergence property because the policy is updated directly
and thus improves smoothly at each time step. With the value-based method, it is the value
function that is updated at each time step and a small change in the value function can lead to
a drastic change in the policy output. This makes the value-based methods often deal with big
oscillations during training.

Section 2.2. Deep Reinforcement Learning Page 14

• Policy Gradient Methods can deal with infinite and continuous action spaces. Instead of deter-
mining a Q-value for each possible discrete action, the action can be estimated directly, e.g. the
rotating angle of a mobile robot is estimated directly by the agent.

• Policy Gradient Methods have the ability to learn stochastic policies, i.e., actions are chosen with
certain probabilities. It is especially necessary for uncertain, partially observable environments.

The big disadvantage of Policy Gradient Methods is that they rather converge to a local optimum than
to the global optimum [29].

REINFORCE algorithm

REINFORCE is a Monte-Carlo variant of policy gradients introduced by [38] in 1992. The agent collects
a trajectory τ (state-action sequence s0, a0, . . . , sH , aH where H is the length of the sequence) of one
episode using its current policy, and uses it to update the policy parameter. The policy performance
measure J(θ) in equation (2.2.12) is defined by the expected return of all trajectories τ . The contribution
of each trajectory τ to the expected return is the product of the cumulative reward R(τ) and the
probability of its occurrence p(τ | θ) under policy πθ.

J(θ) = E[
H∑
t=0

R(st, at) | πθ] =
∑
τ

p(τ | θ)R(τ), (2.2.12)

where R(τ) =
∑H

t=0R(st, at) is the total reward the agent obtains after performing the trajectory τ .
And the goal is to find θ? (see equation (2.2.13)) that creates the trajectory τ that maximizes the
expected rewards J(θ).

θ? = argmax
θ

∑
τ

p(τ | θ)R(τ). (2.2.13)

To achieve this goal, the parameters θ are updated using the gradient ascent as shown in equation
(2.2.14):

θ = θ + α∇θJ(θ), (2.2.14)

where α is the learning rate and the gradient of J(θ), ∇θJ(θ) of one trajectory can be determined by
applying the Policy Gradient Theorem that has been derived in [29]. This results in equation (2.2.15)

∇θJ(θ) = E[∇θlogπθ(a | s).R(τ)], (2.2.15)

and the global gradient for all the episodes is given by equation (2.2.16):

∇θJ(θ) =
1

N

N∑
i=1

H∑
t=0

∇θ log πθ(a
(i)
t | s

(i)
t)R(τ (i)), (2.2.16)

where N is the total number of episodes. The REINFORCE method can be represented as in Figure
2.7.

Section 2.2. Deep Reinforcement Learning Page 15

Figure 2.7: Agent-environment interaction in REINFORCE (inspired from [10]).

Vanilla Policy Gradient Algorithm

REINFORCE suffers from high variance and low convergence. The variance provides conflicting descent
direction for the model to learn. One sampled reward may want to increase the log-likelihood and
another may want to decrease it. This hurts the convergence. One way to reduce variance and increase
stability is subtracting the cumulative reward by a baseline. Vanilla Policy uses a baseline b(st) to solve
this issue and the equations become:

θ = θ + α∇θJ(θ), (2.2.17)

∇θJ(θ) =
1

N

N∑
i=1

H∑
t=0

∇θ log πθ(a
(i)
t | s

(i)
t)(R(τ (i))− b(st)). (2.2.18)

Intuitively, making the cumulative reward smaller by subtracting it with a baseline will make smaller
gradients, and thus smaller and more stable updates. Common baseline functions are Q-value, Advan-
tage, and TD-error (more details in the following section 2.2.5).

2.2.5 Hybrid Methods: Actor-critic.

This approach combines value-based and policy-based methods. Two entities appear in the formulation
of the Actor-Critic Methods, The Critic and the Actor. The critic estimates measures how good the
action taken in a given state is (Q-value) or how good it is to be in a state (V-value). The actor controls
how the agent behaves, it uses a policy gradient-based approach and updates the policy distribution in
the direction suggested by the Critic. Both the critic and actor functions are parameterized with neural
networks. For the one step approach, on each learning step, both the actor parameters θ and the critic
parameters ω are updated. Because we do an update at each time step, the total reward R(t) can’t
be used. Instead, we need to train the critic model that approximates the utility function. This utility
function replaces the reward function in the REINFORCE approach. Hence, the actor parameters and
critic parameters are respectively updated using following equations (2.2.19) and (2.2.21):

Section 2.3. EONs Provisioning Strategies Page 16

θ = θ + αθ∆θ, where (2.2.19)

∆θ = Ûω(s, a).∇θ(log πθ(s, a)). (2.2.20)

ω = ω + αω∆ω, where (2.2.21)

∆ω = (R(s, a) + γQ̂ω(st+1, at+1)− Q̂ω(st, at)).∇ωQ̂ω(st, at). (2.2.22)

αθ and αω are the learning rates of the actor and the critic, respectively. Q̂ is the Q function ap-
proximation of the critic. The variable Û depends on the type actor-critic method and is defined as
follows:

Û =

Q̂, method is called Q Actor-critic (QAC)

Â, method is called Advantage Actor-critic (A2C)

σ̂ = TD error, method is called TD Actor-critic

with
σ̂ = TD error = R(s, a) + γQ̂ω(st+1, at+1)− Q̂ω(st, at), (2.2.23)

and the advantage
Â(s, a) = Q̂(s, a)− V (s), (2.2.24)

where V (s) in the average value of the state s.

The actor-critic learning process is represented in Figure 2.8.

Figure 2.8: Actor-Critic learning process (inspired from [29]).

2.3 EONs Provisioning Strategies

Optical fibers are largely deployed in fiber-optic communications, as they enable transmission over longer
distances and at higher bandwidths (data rates) than wire cables. These properties are due to lower

Section 2.3. EONs Provisioning Strategies Page 17

losses and a higher number of channels that can be simultaneously transported over their large spectrum
window. In an optical fiber, the region between 1.3 and 1.6 µm is exploited for transmission. Within this
region, the C band presents the lowest losses of the whole fiber spectrum and is exploited for transmitting
over very long distances (from tens to thousands of kilometers). The C band refers to the wavelengths
around 1550 nm and includes wavelengths between approximately 1525 nm (or a frequency of 195.9
THz) and 1565 nm (191.5 THz). Wavelength Division Multiplexing (WDM) denotes the technology
enabling the transmission of a number of optical signal carriers onto a single optical fiber by using
different wavelengths (see Figure 2.9).

Figure 2.9: Wavelength Division Multiplexing (WDM (extracted from [24]).

The WDM spacing between two adjacent central frequencies is fixed and is 50 GHz, which is specified
by the International Telecommunication Union (ITU)-T standards [11]. WDM usually has fibers that
carry 50 GHz wavelengths with bandwidths up to 100 Gbps. As shown in Figure 2.10, if a request
connection only requires a fraction of the available bandwidth of a channel, that channel would not be
used efficiently since there would be a big wasted spectrum in it and no other requests would be able
to use it for their transmission.

Figure 2.10: Fix and flexible frequency grids.

To face the ceaseless traffic growth in the last decade, mechanism that allows for serving high bit-
rate requests as big as 400 Gbps and 1 Tbps is needed; It is provided by Elastic Optical Network

Section 2.3. EONs Provisioning Strategies Page 18

that has the capability to slice the spectrum into frequency slot of width granularity of 12.5 GHz
with 6.25 GHz central frequency granularity in contrast to the coarser 50 GHz width in the fixed
grid. The flexible grid gives the ability to define an aggregate super-channel spectral width of N×
12.5 GHz to accommodate any combination of optical carriers, modulation formats, and data rates.
This supports provisional modulation formats, which allow operators to balance their requirements for
increased spectral efficiency versus extended reach of the optical signals. In addition, the flexible grid
provides the capability to elastically allocate frequency slots on demand and/or modify the modulation
format of optical channels according to traffic demands. This allows resources to be used efficiently in
response to traffic variations. Figure 2.11, below, shows an example of a flexible grid spectrum allocated
to 400G and 1Tb super-channels along with today’s 50 GHz 100G channels.

Figure 2.11: ITU-T G.694.1 Flexible Grid Architecture (extracted from [28]).

ITU-T REC G.694.1 [11] defines the following terms that will be used throughout this thesis.

• Frequency slot : The frequency range allocated to a slot and unavailable to other slots within a
flexible grid. A frequency slot is defined by its nominal central frequency and its slot width.

• Slot width: The full width of a frequency slot in a flexible grid.

• The baud rate: It is the rate symbols which are generated at the source and, to a first approxi-
mation, equals to the electronic bandwidth of the transmission system.

• The modulation format: For a given baud rate the modulation format defines the equivalent
number of bits each symbol is transporting. Figure 2.12 presents the encoded bits per symbol
and data constellations for common modulation formats. We can see that high-level modulation
(16-QAM for instance) has a higher number of bits per symbol. This makes high-level modulation
more sensitive to attenuation, and definitely, a high-level modulation with a narrow spectrum and
low OSNR (Optical Signal to Noise Ratio) tolerance may be selected for a short path, whereas a
low-level modulation with a wider spectrum and high OSNR tolerance may be used for a longer
path.

Figure 2.12: Encoded bits per symbol and data constellations for common modulation formats (extracted
from [22]).

Section 2.4. Related Works Page 19

2.4 Related Works

In this section, we present the methods generally used to solve the RMSA problem. In the first part,
we present some used heuristics, exact methods and ILP methods and in the second part, we focus on
methods related to reinforcement learning.

2.4.1 RMSA with OR tools.

Several variants of the RSA problem have been studied in the literature, and take into account various
design aspects. Accordingly, a variety of integer linear program(ILP) formulations have been proposed,
each tailored to a specific problem variant. Since the problem is intractable, these ILP formulations
cannot be solved within a reasonable amount of time for problem instances corresponding to network
topologies encountered in practice. Therefore, an array of heuristic algorithms have been put forward
to obtain reasonably good solutions efficiently. In [35], Link-based ILP formulations of RSA as a multi-
commodity flow problem have been studied and two heuristic algorithms were developed to solve the
RSA problem. The first algorithm, referred to as the shortest path with maximum spectrum reuse
(SPSR), uses shortest path routing and the first-fit spectrum allocation strategy to assign frequency
slots to demands in decreasing order of their size. The second algorithm, balanced load spectrum
allocation (BLSA), considers the k shortest paths as candidates for each demand and selects the one
that minimizes the maximum link load, so as to balance the use of spectrum across the network links.

A different, path-based ILP formulation of the RSA problem was presented in [15]. In a path-based
formulation, k paths are precomputed for each demand, such that the demand may be routed only along
one of these paths. The ILP is used to assign one of the predetermined paths to each demand, while also
satisfying the spectrum contiguity and non-overlapping spectrum constraints; the spectrum continuity
constraint is implicitly satisfied since the assignment of subcarriers is along a whole path. The objective
is to minimize the number of sub-carriers that are used in any link in the network. Although this path-
based formulation is more compact than the link-based ILP of [35], the number of decision variables
and constraints is substantially large that it cannot be solved directly. Accordingly, a heuristic algorithm
called adaptive frequency assignment with collision avoidance (AFA-CA) was presented to select the
path for each demand. Another path-based ILP formulation for the RSA problem was presented in [4]
where the objective is to minimize the maximum subcarrier index assigned on any link in the network.
A greedy heuristic algorithm is also presented that processes demands in decreasing order of either their
size or their shortest path length; this order is fixed, unlike the heuristic in [15] that adapts the order as
the algorithm progresses. A simulated annealing meta-heuristic that builds upon the greedy algorithm
was also presented.

2.4.2 RMSA with RL tools.

In our knowledge, a few works addressed the RMSA problem using reinforcement learning. In [3],
the author proposes a Deep-RMSA, a deep reinforcement learning-based self-learning RMSA agent, to
realize dynamic autonomous and cognitive RMSA for EONs. Using a deep Q-network consisting of
multiple convolutions and fully connected layers, the k-shortest paths for each request are computed
and the deep Q-network has to choose for each of the request a path between the k. They used the
impairment-aware-modulation format adaption and the first-fit spectrum assignment to simplify the
model.

3. Proposed Reinforcement Learning Framework
for RMSA Problem

The chapter presents the used methods and the concrete training setup. Section 3.1 presents the
mathematical formulation of the Routing, Modulation and Spectrum Assignment Problem followed by
Section 3.2 that covers in detail the different steps that have been followed to solve the problem. Section
3.3 presents the RL-agent specific setup that includes different observation spaces, action spaces, reward
functions, and neural network architectures.

3.1 Mathematical Formulation of the Offline RMSA Problem

3.1.1 Offline RMSA Problem Statement.

An Elastic Optical Network (EON) can be represented by a directed graph G = (N,L), where N is the
set of nodes (locations) and L is the set of optical fiber links connecting pairs of locations. The frequency
spectrum that is available is defined by the standard ITU-T G.694.1 [11]. According to the standard,
the spectrum capacity of each fiber link is defined by a set S of 384 frequency slots with a width of
12.5 GHz (S = s1, s2, . . . , s|S|). A channel can be considered as a specific number of contiguous slots
(adjacent to each other) on a specific link, see Figure 3.1. The formulation is the following:

Input: Given

i) An EON, represented by a directed connected graph G(N,L),

ii) A set S of frequency slots,

iii) A set D of demands or requests. Each demand d ∈ D is represented by the tuple < sd, td, bb >
characterized by:

– A source node sd ∈ N and a target node td ∈ N , such that (sd, td) ∈ SD, where SD is the
set of source-destination node pairs with traffic demand, s 6= t.

– A bit-rate b ∈ B, where B is the set of rates.

Output: The route over the flex-grid optical network and the spectrum allocation of every transported
demand. Provisioning a request consists of determining:

i) A path from the source node to the destination node,

ii) An adapted modulation format among the available ones,

ii) A spectrum allocation on every link of the selected path, which must satisfy the continuity and
contiguity constraints, (see below for their definitions).

Objective: The offline problem is defined as determining an optimal provisioning of the set of requests
D. The two most common objectives are to:

20

Section 3.1. Mathematical Formulation of the Offline RMSA Problem Page 21

i) Maximize the network throughput, which is defined as the summation of the rates of all granted
requests,

ii) Minimize the total amount of used slots.

Note that from the problem definition, demands can be served or alternatively rejected. We choose that
objective instead of serving all demands to avoid in-feasibility that may appear when trying to serve
large sets of demands over a capacitated network.

Constraints: The provisioning task is subject to the following constraints:

i) Non-Overlapping Constraint: A slot can be assigned to only one request on a given fiber link.

ii) Continuity Constraint: The same slots are assigned to the path links of a request.

iii) Contiguity Constraint: The assigned slots on a link have to be contiguous (adjacent to each
other) in the frequency domain.

Figure 3.1: Provisioning example.

3.1.2 Mathematical Formulation.

In the following, we present an ILP model for the above problem, based on the formulations in [33].
This formulation based on channel assignment explicitly removes the spectrum contiguity and continuity
constraint, however, it takes into account these constraints; Table 3.1 presents the sets and parameters
that have been defined for the formulation.

In this formulation, a precomputed set of candidate channels defining a set of contiguous frequency slots
is given as an input parameter to the formulation. The definition of the channel can be mathematically
formulated as follows. Let γcs be a coincidence coefficient that is equal to 1 whenever channel c ∈ C
uses slot s ∈ S, and 0 otherwise. Let us assume that a set of channels C(d) is predefined for each
demand d, which requests nmd slots (m refers to the corresponding modulation). Then, ∀c ∈ C(d) the
spectrum contiguity constraint is implicitly imposed by the proper definition of γcs, such that

∀si, sj : γcsi = γcsj = 1 , si < sj ⇒ γcsk = 1, ∀sk ∈ {si, . . . , sj},
∑
s∈S

γcs = nmd . (3.1.1)

Section 3.1. Mathematical Formulation of the Offline RMSA Problem Page 22

Table 3.1: Terminology and notation of the mathematical formulation.

Notation Description
Decisions Variables

xd Binary. Equal to 1 if demand d is rejected, 0 otherwise.

ypc Binary. Equal to 1 if channel c is assigned to path p, 0 otherwise.

Precomputed parameters
P (d) Subset with the predefined candidate paths for demand d. Each path p consists of a set

of links l ∈ L so that nodes sd and td are connected.

C Set of Channels, index c. Each channel contains a subset of contiguous frequency slots.

C(d) Subset of channels for demand d.

δpl Equal to 1 if path p uses link l, 0 otherwise.

γcs Equal to 1 if channel c includes frequency slot s, 0 otherwise.

nmd Number of slots to transport the requested bitrate of demand d using modulation m.

len(l) Length in kilometers of link l ∈ L
len(p) Length in kilometers of path p ∈ P , len(p) =

∑
l∈L δpllen(l)

M Set of modulation formats, index m.

len(m) Reach in kilometers of modulation format m.

qcm Equal to 1 if channel c ∈ C is computed for modulation format m, 0 otherwise.

Additionally, the decision variable ypc implicitly imposed the continuity constraint since this variable
equals 1 if channel c is assigned to path p. Knowing that a path is a set of links, saying that a
channel is assigned to a path means that each of the links of that path uses that channel and therefore,
the continuity constraint is satisfied. The number of channels that uses n slots on a link given by
|C(n)| = |S| − (n− 1) ensures that the capacity of each link is not exceeded.

To account for guard bands, without loss of generality, we consider that they are included as a part of
the requested spectrum (nmd). Therefore, we can define the problem like one that finds a route and
assigns a proper channel to a set of input demands, so that the number of active slots in the channel
guarantees that the bitrate requested by each demand can be transported.

The formulation is an optimization problem where we want:

maximize
∑
d∈D

(1− xd).bd. (3.1.2a)

subject to
∑

p∈P (d)

∑
c∈C(d)

ypc + xd = 1, ∀d ∈ D, (3.1.2b)

∑
d∈D

∑
p∈P (d)

∑
c∈C(d)

γcs.δpl.ypc ≤ 1, ∀l ∈ L, s ∈ S, (3.1.2c)

∑
p∈P (d)

∑
c∈C(d)

qcm.len(p).ypc ≤ len(m), ∀d ∈ D, m ∈M. (3.1.2d)

The objective function (3.1.2a) maximizes the amount of bitrate that is served (accepted). Firstly,
Constraint (3.1.2b) is required to ensure that a lightpath (feasible path and channel) is selected for each
demand provided that the demand is served; otherwise, the demand cannot be served and is therefore
rejected. Secondly, Constraint (3.1.2c) is used to guarantee that every slot in every link is assigned to
one demand at the most. Finally, Constraint (3.1.2d) is used to guarantee the selection of a modulation
format with enough reachability for the selected path.

Section 3.2. Method Description Page 23

3.2 Method Description

Let’s recall that we modeled a demand d from the source node s to the target node t with bit-rate b
Gbps by a tuple < sd, td, bd >. To provision the demand d, we need to compute an end to end routing
path Pst, determine a proper modulation format m to be used with a QoT (Quality of Transmission)
assurance, and allocate a number of spectrally contiguous slots on each link along Pst. Figure 3.2
represents the basic operation of the RL-agent in a network routing scenario.

Figure 3.2: Schematic representation of the RMSA-RL operation.

When there is a new set of requests to be routed, this is communicated to a network controller (1).
Then, the controller generates a new state representation that will be the input of the RL agent (2).
This state representation includes information about the state of the network (optical link occupation
and spectrum utilization) and the new traffic request (source, target, and rate). With this input, the
RL agent selects an action that involves making a routing decision (3)(choice of a path, a modulation,
and frequency slots). Lastly, the controller translates the resulting action to a particular set of network
rules that are installed into some network devices (4). This way, during the training phase, the RL
agent learns how to properly act over the network by iteratively exploring different routing strategies
and considering the reward obtained. To reach that goal, Figure 3.3 describes the process as follows:

Figure 3.3: Steps to Solve the Problem.

Section 3.2. Method Description Page 24

3.2.1 Computation of the K-Shortest paths.

Using the same notation of Section 3.1.1, G(N,L) being our network with |N | nodes and |L| links,
where any (s, t) ∈ SD is assigned with the value cst ∈ R+, that denotes the cost, or distance or length,
of (s, t) .

• A path p from s ∈ N to t ∈ N in G (s 6= t), is a sequence of the form p =< s = n1, n2, . . . , t =
n|p| >, where (ni, ni+1) ∈ SD, for any i ∈ {1, . . . , |p| − 1}. Here |p| represents the hope of p,
that is its number of nodes.

• The total cost, or distance, or length of p is defined by:

c(p) =
∑

(s,t)∈p

cst (3.2.1)

For each demand or request d ∈ D, a set of Kst paths P (d) = {p1, p2, . . . , pKst} is calculated (Kst-
shortest paths) using the Yen’s KSP algorithm [39] given in Algorithm 1.

Algorithm 1 Yen’s Algorithm.

Input:
- A directed graph where each edge has a real-valued positive weight
- A source node s and target t in a directed graph.
- The value of k
Output: List of the k-shortest path
Begin

1: Find the shortest path p1

2: for k = 2, 3, . . . do, find pk as follows:
3: Let Bk = Bk−1 , the set of candidate paths from iteration k − 1
4: for 1 ≤ i < |pk−1| do
5: Let x = pk−1i

6: Hide incoming edges to x for the remainder of iteration k
7: for each j such that the first i nodes in pj match pk−1 do
8: Hide edge (x, pji+1)for the remainder of iteration k
9: end for

10: Rki is the first i nodes of pk−1

11: Ski is the shortest path from x to t
12: Join Rki and Ski to form Dk

i

13: Add candidate path Dk
i to Bk

14: end for
15: Remove the shortest path from Bk and return it
16: end for
17: return the k Shortest paths

End.

The above Yen’s algorithm employs any efficient shortest path algorithm (Dijkstra [37] in our case, see
appendix A.0.1) to find the best path, then proceeds to find k − 1 deviations of the best path. The
Yen’s algorithm is written using the following terminologies and notations:

Section 3.2. Method Description Page 25

• pk = {s, pk2, pk3, . . . , pk|pk|−1, t} is the kth shortest path from s to t.

• Dk
i is the deviation from pk−1 at node pk−1i ; More specifically, the shortest s to t path that:

– coincides with pk−1 from s to pk−1i ,

– deviates to a node n where n is not used as this deviation in any of the k−1 shortest paths,

– reaches t by a shortest path from n without using any node in the first part of the path.

• Rki = {s, pk2, pk3, . . . , pki } is the root of Dk
i .

• Ski = {pki , . . . , t} is the spur of Dk
i .

An illustration of Rki and Ski is given in Figure 3.4.

Figure 3.4: Root and Spur Representation.

3.2.2 Determine the appropriate Modulation.

Once the Kst shortest paths of each request are determined, the geographical lengths of those paths
are computed. Then, the length of each of the paths and the bit-rate of the corresponding request
are used to determine the modulation format and the number of necessary slots per channel. Flexible
spectral resource allocation can be done as follows: As explained in Section 2.3, since the shortest path
experiences the smallest optical SNR degradation and filter narrowing effect, the most spectrally efficient
modulation is selected (e.g., 16-QAM). For path having a long distance, a more robust modulation is
utilized (e.g., QPSK). Table 3.2 gives reachable distances for each of the modulation.

Table 3.2: Distance-Modulation principle.

Modulation Distance (Km)
BPSK >4000

QPSK 4000

8-QAM 1200

16-QAM 600

3.2.3 Computation of the number of slots per request.

At this point, knowing the modulation and the bit-rate bd of the corresponding request d, the number
of frequency slot n for the corresponding channel is computed using the formula in equation (3.2.2):

n =
bd
B.W

, (3.2.2)

where B ∈ {1, 2, 3, 4} is the number of bits per symbol of the constellation on each polarization
respectively for BPSK, QPSK, 8-QAM and 16-QAM (see Section 2.3) and W the slot bandwidth.

Section 3.3. Reinforcement learning framework Page 26

3.3 Reinforcement learning framework

To solve the RMSA problem, three reinforcement learning algorithms (Deep-Q-learning, REINFORCE
and Advantage Actor-critic (see Section 2.2)) have been implemented with an agent that acts in the en-
vironment behaving like a real network provisioning environment. At each time t, the agent receives the
state St from the environment, it takes an action At and receives a reward Rt+1. The agent continues
this process (. . . , St, At, Rt+1, St+1, At+1, Rt+2, . . .) until the end of the provisioning. In reinforcement
learning, the design of the environment, the state space and action space representations as well as the
design of reward function are important for the algorithms overall performance. We describe the four
key elements as follows.

3.3.1 Design of the RMSA Environment.

The proposed RMSA environment architecture is presented in Figure 3.5. The DRL-agent interacts
with the environment by calling the functions defined in the environment interface (env.reset() and
env.step()). The dashed and the solid black arrows in the figure show the interactions between the
components when the DRL-agent calls the reset and step functions respectively.

Figure 3.5: Proposed RMSA Environment Architecture.

In Figure 3.5, the dashed arrows are followed during the initialization of the environment. The Process
starts when the DRL-agent calls the reset function (1#). The network topology (2#) and the data
(3#) are loaded and sent to the Spectrum-Manager. The Spectrum-Manager uses those information to
generate and initialize the spectrum utilization that is then sent with information on the current request
to the Env-Manager(4#). The Env-Manager will then build the state representation and send it to the
DRL-agent(5#) as output of the reset function (6#).

The solid arrows in the other hand are followed when the DRL-agent calls the environment with an
action (1) using the step function. The action is sent (2) to the Env-Executor that will check if the

Section 3.3. Reinforcement learning framework Page 27

action led to a well routing of the corresponding request. It will then send the outcome (3) to the
Spectrum-Manager that will update or refresh the spectrum utilization and send it with a new request
to the Env-Manager (4). The latter will generate the new state representation, compute the obtained
reward and send them to the DRL-agent with an additional information called ”Done” which informs
the DRL-agent if it is the end of the process or not (5) (6).

The end of the process is the end of an episode. During the training phase, we can repeat as many
episodes as we want.

3.3.2 State Space.

The DRL-agent needs to get all relevant information about the current state of the environment to be
able to fulfill the task successfully. The following listing provides the raw data that has been identified
as relevant.

• The total spectrum usage of all the links: It is a (|L| × |S|) array containing the information of
the spectrum utilization.

• The information about the current request : That is the links belonging to each of the k paths (Ob-
tained through Step 3.2.1) and the corresponding number of frequency slots assigned (Obtained
through Step 3.2.3).

Figure 3.6: Proposed State Representation.

Section 3.3. Reinforcement learning framework Page 28

Figure 3.6 shows a scheme of our representation. Here, given the current total spectrum usage and
the information about the new request (Figure 3.6 left), our approach is to provide directly the agent
with information about the spectrum utilization of all the links associated with each of the k candidate
paths and the corresponding number of slots (Figure. 3.6 right). Intuitively, this simplifies the problem
given that the representation proposed shows the agent a comprehensive picture that describes the link
occupation of each path and with the given number of slots, the agent can easily make a comprehensive
action.

In the spectrum usage representation in Figure 3.6 left, The white color cells (slots) correspond to
available slots and colored cells correspond to occupied slots (different colors are assigned to different
requests). In Figure 3.6 right, we just have two colors (white for available and black otherwise). As
a path will just use its associated links, the representation considered all the other links as completely
unavailable and just the associated links of that path have the real link occupation.

3.3.3 Action Space.

Once the state space is defined, the action space A of the RMSA problem is straightforward. The action
space is defined as:

A = {At / At = {pk | p1, . . . , p|K|, p|K|+1}, t ≤ H}, (3.3.1)

where At is the provisioning action at time t, and H the maximum number of step per episode. pk

denotes that the agent selects the kth shortest path to be routed at time step t given the set of K paths
of request d. The action p|K|+1 represents the action ”do nothing”, meaning that the agent is not sure
about the path to be selected or it prefers to handle the request later. In the case of action p|K|+1, the
request is sent at the end of the requests in the queue. Hence, given a request, the possible action at
each time step is either to choose the path or to postpone the request.

The spectrum assignment is done using the First Fit algorithm (The first available slots going from the
bottom to the top that satisfy all the constraints will be selected).

3.3.4 Reward function.

The design of the reward function could impact provisioning policies, which is critical for policy training.
The reward at each time step should help guide the actual provisioning actions, and the accumulative
long term reward should also reflect the final provisioning objective. Knowing that when the agent
selects a request to be routed on a particular channel at a particular time t we have two possible cases,
i) the request is well routed, ii) the request is not routed because of the non-availability of continuous,
contiguous and non-overlapping slots at time t or because of capacity overflow. Based on the above
understanding, we defined the reward function as:

Rt+1 =

{
bdt , If request dt is well routed,

0 Otherwise ,

where Rt+1 is the immediate reward at time t. bdt is the bit rate of the current request d at time t.

Section 3.3. Reinforcement learning framework Page 29

3.3.5 Neural Network Architecture.

Google recently reported a human-level control paradigm leveraging deep reinforcement learning [20].
Specifically, they parameterized a convolution neural network that can learn successful policies from
high-dimensional sensory data (e.g., images). Inspired by this work, and as our state representation is a
set of images, for the three reinforcement algorithms that we implemented, we structured a deep neural
network consisting of multiple convolutions and fully connected layers to learn the best RMSA policies
regarding the proposed EON states. The training of the CNN takes advantage of two key ideas from
[20], i.e., deployment of target action-value Q-network and experience replay, for avoiding the divergence
of parameters.

Tables 3.3, 3.4 and 3.5 respectively present the network architecture used for the DQN, REINFORCE
and Actor-Critic models. There are three convolutional layers and two fully connected layers. The first
hidden layer is a 2D-Convolution with 32 filters with a filter size of [8×8] and a stride of 4. The second
and third layers are as well 2D-Convolution with 64 filters, while the second layer has a filter size of
[4 × 4] and a stride of 2 and the third layer has a filter size of [3 × 3] and a stride of 1. The fourth
and last hidden layer is a fully-connected layer with 512 neurons. All hidden layers apply the ReLu
activation function. The output size depends on the used action space size mentioned in Section 3.3.3
and the input on the state representation (Section 3.3.2). It is a stack of #paths 84× 84 images that
are processed by the first layer. The vector of size #paths containing the number of slots associated
with those paths is additionally provided by concatenating it with the flattened output of layer three.

Table 3.3: Convolutional Neural Network Architecture (DQN).

Layer Type Activation Number of Filter Filter Size Stride

1 Convolution ReLU 32 [8× 8] 4
2 Convolution ReLU 64 [4× 4] 2
3 Convolution ReLU 64 [3× 3] 1
4 Fully-Connected ReLU 512 - -
5 Fully-Connected None #paths +1 - -

Table 3.4: Convolutional Neural Network Architecture (REINFORCE).

Layer Type Activation Number of Filter Filter Size Stride

1 Convolution ReLU 32 [8× 8] 4
2 Convolution ReLU 64 [4× 4] 2
3 Convolution ReLU 64 [3× 3] 1
4 Fully-Connected ReLU 512 - -
5 Fully-Connected Softmax #paths+1 - -

Section 3.4. Baseline Algorithm: a Heuristic Approach Page 30

Table 3.5: Convolutional Neural Network Architecture (Actor-Critic).

Layer Type Activation Number of Filter Filter Size Stride

1 Convolution ReLU 32 [8× 8] 4
2 Convolution ReLU 64 [4× 4] 2
3 Convolution ReLU 64 [3× 3] 1
4 Fully-Connected ReLU 512 - -

5 (Actor) Fully-Connected Softmax #paths+1 - -
5 (Critic) Fully-Connected None 1 - -

3.4 Baseline Algorithm: a Heuristic Approach

Research conducted by Talebi et al. [30] and Alaskar et al. [1] mapped the Spectrum Assignment
(SA) problem to the task scheduling problem in multi-processor systems where multiple processors are
simultaneously assigned to execute the same task. Indeed, given a multiprocessor system that includes
a set of m identical processors, a set of n tasks, and processing time pi for task τi, schedule the
tasks with the objective to minimize the total processing time consumed by all the tasks, with three
different constraints: (1) Preemption is not allowed, (2) Each task should be simultaneously assigned
to the corresponding processors, (3) Each processor can be assigned to only one task at a time. As
a result of the mapping between the spectrum allocation problem in EONs and scheduling problem in
multiprocessor systems, a network is identical to a multi-processing system, requests are identical to
tasks, links are identical to processors, and the amount of spectrum is identical to the processing time.
As the aim in the multi-processing system is to minimize the processing time consumed by all the tasks,
it is for the SA to minimize the total amount of spectrum needed to serve the traffic demand. The
problem in that form was solved using a well-known list scheduling heuristic called compact scheduling
algorithm.

As the baseline algorithm, we used the compact scheduling algorithm [30] and we adapted the algorithm
to allow it to consider the choice through multiple paths. The original compact scheduling algorithm is
constituted by the following steps:

1. Select the first request in the list and assign it to a set of consecutive links,

2. Delete the executed request from the list, and update the status (idle or busy) of the corresponding
links,

3. Scan the list at the same provisioning instant to select requests that can be executed simultaneously
with the currently executed requests,

4. Continue scanning the list until there are no other requests that can be executed at that provi-
sioning instant or no available links,

5. Advance the provisioning time based on the earliest finishing request, and add the available links
to the set of free links,

6. Repeat the aforementioned steps until all the requests have been satisfied.

To be able to manage the choice of a path between the available paths, we adapted the compact
scheduling algorithm as follows: When a request j having a set of path pathj have to be served, the

Section 3.4. Baseline Algorithm: a Heuristic Approach Page 31

different paths sorted in ascending order of geographical distance are checked and the first path with
the available links is selected. The following algorithm describes the process.

Algorithm 2 Adapted Compact Scheduling Algorithm for multiple paths.

Input: A list D of |D| requests on |L| links each request j having a set of path pathj (ranked in
ascending order of geographical distance), each path p having a bandwidth npj and a set linepj ⊆
{1, 2, . . . , |L|} of required links.
Output: A schedule of requests, i.e the starting slots Sj which serves the corresponding request when
each request j starts provisioning on the network and the path Pselectj selected for the request j.
Begin

1: slot← 0 . Current slot
2: F ← {1, 2, 3, . . . , |L|} . Set of currently idle links
3: while list D 6= ∅ do
4: j ← first request in the list D
5: pj ← first path in the set of pathj
6: while linepj * F and not at the end of set pathj do
7: pj ← next path in pathj . Take the next path
8: end while
9: if Linepj ⊆ F then

10: Remove the request j from the list D
11: Sj ← slot . Request j starts at frequency slice slot
12: Pselectj ← pj
13: F ← F \ linepj . Links of Linepj become busy
14: end if
15: while not at the end of the list D or F 6= ∅ do
16: k ← first request in the list D
17: pk ← first path in the set of pathk
18: while linepk * F and not at the end of set pathk do
19: pk ← next path in pathk . Take the next path
20: end while
21: if Linepk ⊆ F then
22: Remove the request k from the list D
23: Sk ← slot . Request k starts at frequency slice slot
24: Pselectk ← pk
25: F ← F \ linepk . Links in Linepk become busy
26: end if
27: end while . No more request may start at frequency slice slot
28: j ← the first request provisioning at slot slot to complete
29: t← Sj + npj . Advance the starting slice slot
30: F ← F ∪ linepj . Links in linepj become idle
31: end while
32: return the starting frequency slices Sj and the selected path Pselectj

End.

Following the mathematical formulation of the RMSA problem, as well as the description of the Rein-
forcement Learning framework and the baseline Algorithm, the next chapter, will present the stage for
the experiment and the results obtained will be stated.

4. Experiments and Results

In this chapter, we present and analyze the numerical results obtained with the proposed algorithms for
the static RMSA problem, using data sets whose sizes match those of today’s real optical networks.

The chapter is organized as follows: In Section 4.1, we describe the details of the network topologies and
the demand traffic. Section 4.2 examines and discusses the results of the preprocessing step. We assess
the performances of the proposed algorithms through their quantitative and qualitative evaluations that
are respectively given in Section 4.3 and 4.4.

4.1 Experimental Setup

This section describes the network topologies and the way the traffic demand has been generated.

4.1.1 Network Topologies.

Four different topologies have been used, i.e., CONUS (a large USA topology reproduced in Figure 4.1),
USA (another USA topology, but of medium size, replicated in Figure 4.2), NTT (a topology of Japan
shown in Figure 4.1.1) and GERMANY (a topology of Germany shown in Figure 4.4). References and
more details for those topologies can be found in SNDlib [23], Monarch Network Architects [23] and
The Internet Topology Zoo [16]. The key characteristics of each topology (number of nodes and links;
diameter (∆); average, maximum and minimum node degrees; average, maximum and minimum link
length (in Km)) are described in Table 4.1. Columns entitled ’Avg.deg.’, ’Max.deg.’ and ’Min.deg.’
are respectively the average nodal degree, the maximum nodal degree, and the minimum nodal degree.
These information are useful to measure the network connectivities, a key characteristic number of
shortest (or near shortest) paths. The last 3 columns entitled ’Avg.Link.’, ’Max.Link.’ and ’Min.Link.’
that respectively represent the average link length, the maximum link length and the minimum link
length are evaluated, are particularly of interest in order to select the required modulation for the
requests routed over short or medium or long paths.

Table 4.1: Key topology characteristics.

Datasets |N | |L| ∆ Avg.deg. Max.deg. Min.deg. Avg.Link. Max.Link. Min.Link.

CONUS 60 158 15 5.26 8 4 447.93 1468 24.2
USA 24 86 6 7.16 10 4 995.34 2600 250
NTT 55 144 15 5.23 10 2 16.43 50 10

GERMANY 50 176 9 7.04 10 4 41.68 146 1

The four network topologies are represented in Figures 4.1-4.4, where undirected connections represent
bidirectional links. Both CONUS and USA topologies have links with very long lengths while NTT and
Germany ones have shorter links. NTT network is particular as it contains nodes of degree 2, i.e., nodes
(0), (1), (3), (4) and (13). It entails that, for some node pair, there is either a unique one-link path, or
a one-link shortest path and then a quite long path for the second shortest path.

32

Section 4.1. Experimental Setup Page 33

Figure 4.1: CONUS Network Topology.

Figure 4.2: USA Network Topology.

Section 4.1. Experimental Setup Page 34

Figure 4.3: NTT Network Topology.

Figure 4.4: GERMANY Network Topology.

Section 4.1. Experimental Setup Page 35

4.1.2 Traffic Generation.

For each network topology and for the training, validation and test experiments, a number of request
sets has been generated. Source and destination node pairs have been randomly selected. Three types
of request bit-rates are considered: 100 Gbps, 200 Gbps, and 400 Gbps. In the first experiment setup all
the invoked bit-rates are uniformly distributed (we called it uniform rate traffic in this work, see Table
4.2) and in the second, the bit-rates are distributed as follows: 70% of 100 Gbps, 20% of 200 Gbps and
10% of 400 Gbps (we called it non uniform rate traffic, see Table 4.3).

Table 4.2: Bit-rate distribution: Uniform rate traffic.

Uniform rate traffic

CONUS Dataset USA Dataset
Rate # requests Percentage Rate # requests Percentage

100 183 37.57 100 287 38.9
200 160 32.85 200 237 32.1
400 144 29.56 400 213 28.9

Total 487 100 Total 737 100
Offered load (Gbps) 107,900 Offered load (Gbps) 161,300

NTT Dataset GERMANY Dataset
Rate # requests Percentage Rate # requests Percentage

100 360 33.24 100 879 36.9
200 358 33.05 200 774 32.5
400 365 33.70 400 729 30.6

Total 1,083 100 Total 2,382 100
Offered load (Gbps) 253,600 Offered load (Gbps) 534,300

Table 4.3: Bit-rate distribution: Non-uniform rate traffic.

Non-uniform rate traffic

CONUS Dataset USA Dataset
Rate # requests Percentage Rate # requests Percentage

100 504 70 100 753 69.98
200 144 20 200 215 19.98
400 72 10 400 108 10.04

Total 720 100 Total 1,076 100
Offered load (Gbps) 108,000 Offered load (Gbps) 161,500

NTT Dataset GERMANY Dataset
Rate # requests Percentage Rate # requests Percentage

100 1,183 70 100 2,493 70.00
200 338 20 200 712 19.99
400 169 10 400 356 10.01

Total 1,690 100 Total 3,561 100
Offered load (Gbps) 253,500 Offered load (Gbps) 534,100

Section 4.2. Data Preparation Page 36

To build models that can generalize, and go beyond the training on a unique traffic demand matrix,
we generated, for each network topology, 20 traffic matrices for the training, and 8 for the validation.
To test a model, a set of demand for each of the topologies is generated with some selected traffic
parameters and the corresponding model is then tested.

With the rates 100 Gbps, 200 Gbps, and 400 Gbps, the number of required frequency slots is computed
for different modulation formats using Equation (3.2.2). Corresponding numbers of required frequency
slots are given in Figure 4.5.

Figure 4.5: Number of slots per modulation and data rate.

From Figure 4.5, we can see that for a given bitrate, the number of slots needed decreases when we
move from lower-level modulation (e.g., BPSK) to higher-level modulation (e.g., 16QAM). For a given
request, the longer its routing or the higher its rate, the more frequency slots it will require as we will
need to use a more slot consuming modulation. Indeed, the RL-agent has to identify the combination of
the best route and modulation in order to minimize the number of required frequency slots, while taking
care of the congestion on its fiber link. This means the RL-agent may need to compromise between
granting a request with a higher rate (so uses more slots) on a short route or granting a request with a
lower rate (so less slots occupation) on a longer route in order to maximize the throughput.

4.2 Data Preparation

For each of the training, validation and test traffic matrices that contain requests characterised by
source, destination, and rate, a preparation step is processed to find information that will be given to
the RL-agent to perform its action. This preparation step is the implementation of the three first steps
of the process represented in Figure 3.3 and described in Section 3.2.1, Section 3.2.2 and Section 3.2.3.
This will help to generate the state representation of the model. Table 4.4 shows an extracted result
of the data preparation on the CONUS traffic demand matrix, where we can see precomputed possible
paths, modulations and number of slots for three demands.

For a good Quality of Transmission (QoT), the number of paths per request is determined such as the

Section 4.3. Quantitative Evaluation Page 37

geographical length of the path does not increase by more than 10% from the shortest path. For the
purpose of training time, we set a stopping condition on the maximum number of paths. This condition
is that we cannot have more than 5 paths per request. Five because after several experiments, we
found out 5 paths to be quite effective, and using a higher number of paths did not result in policy
improvement despite the increase in the training time. As the number of admissible paths is different
per request, we implemented a masking scheme that will automatically mask all the non-admissible
paths at each time step.

Table 4.4: Three first requests on CONUS training demand Preparation.

Id. s t b Paths Length Modulation Slots

1 6-30-26-51-22-35-15-43-50-39 5,300.3 BPSK 16
2 6-30-26-51-10-28-29-5-50-39 5,396.7 BPSK 16

1 6 39 400 3 6-30-26-51-22-35-29-5-50-39 5,507.7 BPSK 16
4 6-31-4-20-44-17-56-37-23-34-42-39 5,700.0 BPSK 16
5 6-30-26-51-22-35-15-43-34-42-39 5,763.8 BPSK 16

1 45-37 574.7 16QAM 2
2 - - - -

2 45 37 200 3 - - - -
4 - - - -
5 - - - -

1 41-18-26-51-10-28-29-5 3,998.5 QPSK 2
2 41-18-26-51-22-35-29-5 4,109.5 BPSK 4

3 41 5 100 3 41-18-26-11-13-12-15-55-16-10-28-29-5 4,390.3 BPSK 4
4 - - - -
5 - - - -

4.3 Quantitative Evaluation

4.3.1 Training Process.

For each network topology, three methods (DQN, REINFORCE, and A2C) are implemented and the
average reward is taken. After a Grid-Search on several parameters, the discount factor γ was set to
0.99, the learning rate α to 10−6 and the Adam optimizer was used. Instead of the ε-greedy method
normally used for action selection (selecting an action corresponding to the maximum Q-value with
probability 1-ε), we found by experimentation that softmax policy works better for our problem so, we
parameterized our policy as a softmax function (that uses Boltzmann distribution) for multiple actions
where the probability of selecting an action a at t is computed as:

p(a = a(i) | s) = πθ(a = a(i) | s) =
exp (a(i)).f(a(i) | s)∑Na
j=1 exp (a(j)).f(a(j) | s)

, (4.3.1)

where Na is the number of actions and f a function representing the masking scheme such as:

f(a(j) | s) =

{
1, if a(j) is allowed in state s,

0 otherwise.

Section 4.3. Quantitative Evaluation Page 38

Each agent has been trained for 100 episodes on a CPU of 3.60 GHz with 32 GB of RAM. Table 4.5
gives an overview of the average training time for each agent setup. We can see that the A2C takes on
average twice the time on the CONUS as compared to the DQN to train, this can be due to the A2C
workflow process. The actor will take time to make its action and additional time will be required to let
the critic also makes its action. These two repetitive pairs of actions can explain this observation.

Table 4.5: Training time.

Dataset DQN REINFORCE A2C

CONUS 3h13m39s 5h53m18s 7h12m40s
USA 2h51m07s 6h18m49s 7h22m47s
NTT 4h52m15s 5h15m02s 5h57m05s
GERMANY 3h12m00s 3h05m59s 5h10m29s

During the training phase, the observation of the evolution of the moving average reward against the
episode helps to evaluate if the model really tries to maximize the total cumulative rewards. Figure 4.6
shows the moving average reward of the three algorithms on the four different topologies. It shows that
both of the algorithms on average increase the cumulative reward and converge after a certain number
of episodes. REINFORCE algorithm got a slightly higher reward on CONUS and NTT topologies while
A2C and DQN got higher rewards respectively on GERMANY topology and USA topology. All the
algorithms have an increasing shape and converge after at the end. The training phase can then be
validated.

(a) Training results On CONUS Topology. (b) Training results On USA Topology.

(c) Training results On NTT Topology. (d) Training results On GERMANY Topology.

Figure 4.6: Moving Average Episode Reward of the Three different methods on each of the topology.

Section 4.4. Qualitative Evaluation Page 39

4.3.2 Test Results.

To check the generalisation capability of the model, we run the different models on two types of traffic.
In the first one, we ran the models with demands generated following the same traffic as the training
phase (non uniform rate traffic). The results as shown in Table 4.6 shows that the different models
perform quite well with more than 92% of the demand’s throughput well provisioned in each case. The
REINFORCE model performs better on each of the topologies with the granted throughput of 99.62%
on CONUS, 99.81% on USA, 96.84% on NTT and 96.77% on Germany and therefore is the model that
gives the best results.

Table 4.6: Average Test result on non uniform rate traffic.

Dataset Heuristic DQN REINFORCE A2C

CONUS 108,000 (100%) 106,800 (98.88%) 107,600 (99.62%) 106,000 (98.14%)
USA 161,500 (100%) 161,200 (99.81%) 161,200 (99.81%) 157,800 (97.70%)
NTT 253,500 (100%) 235,500 (92.89%) 245,500 (96.84%) 233,800 (92.28%)
GERMANY 534,000 (99.98%) 504,600 (94.49%) 516,900 (96.77%) 513,700 (96.18%)

In the second experimental process, knowing that it can happen at certain hours of the day that the
traffic changes and becomes uniform, we also evaluated the performance of the models on traffic different
from the one used to train them. Table 4.7 shows the results on different network topologies. We can
surprisingly see that the three algorithms perform even better than on the first experimental setup with
approximately 100% on each network topologies. This means that the different models learned precious
and useful information on the network topology such as the policy that they follow can be applied and
work pretty good on a different traffic type. This is very important since the traffic type is continuously
evolving and changing. Such a model that can perform very well on different traffic matrices and
different traffic types is really needed. With 100% almost everywhere, the REINFORCE model in the
two experimental setups generalises better than the two others method. The direct choice of the path
(REINFORCE) instead of the choice of the value of a path (DQN) works better for this problem.

Table 4.7: Average Test result on uniform rate traffic.

Dataset Heuristic DQN REINFORCE A2C

CONUS 107,900 (100%) 107,900 (100%) 107,900 (100%) 107,900 (100%)
USA 161,300 (100%) 161,300 (100%) 161,300 (100%) 161,300 (100%)
NTT 253,600 (100%) 251,900 (99.32%) 253,600 (100%) 247,000 (97.01%)
GERMANY 534,300 (100%) 531,200 (99.41%) 531,400 (99.45%) 533,800 (99.90%)

4.4 Qualitative Evaluation

Given that the models give quite an acceptable percentage of handled throughput, the visualisation
of the provisioning strategy with the spectrum usage gives and insight on the quality of the solution
and the satisfaction of the constraints. Indeed, it helps to visually evaluate links occupations and
therefore evaluate if the obtained solution can be easily improved using additional methods such as

Section 4.4. Qualitative Evaluation Page 40

defragmentation [31] for the online version of the problem. Figure 4.7 presents the obtained spectrum
usage on the CONUS network topology. The X-axis represents the links and the Y-axis the frequency
slots. The lecture of the graph starts from the top to the bottom.

Figure 4.7: Spectrum Usage: X-axis represents the links and the Y-axis the frequency slots, it starts
from the up to the bottom.

In Figure 4.7, each demand is represented by one color. On each link (vertical lines), the frequency
slots used by a demand is colored with the color of the corresponding demand. White spaces represent
empty slots (unused slots). We can first notice that all the constraints of continuity, contiguity, and
non-overlapping are satisfied. Secondly, we can notice that the agent mostly starts by granting demand
with a very small number of slots needed (as seen at the top of the image where most of the demand
use smaller frequency slots per link) and then, proceed with larger ones. This means its policy aims,
firstly to select path with a high modulation level when possible to use the least spectrum as possible
that led to more and more accepted bitrate. We can also notice from this figure that even though
the agent tries to adapt his policy according to the constraints related to the number of slots, there is
always a very large number of gaps, i.e. unused slots. This means the agent’s policy in some way fails
in provisioning the demands since there are enough unused slots but all the demands were not granted.

Conclusion and Future Works

In this work, we propose a reinforcement learning framework to solve a crucial problem facing telecom-
munications operators today, that of routing and spectrum allocation for transmissions in elastic optical
networks. The idea was to design an intelligent agent with a global vision on the network’s activities
and great adaptability. Any new request characterized by its bit-rate, source, and destination in the
network must meet the traffic routing constraints. The intelligent agent, therefore, has to associate
each request with an optical path to be taken, modulation and spectral resources in order to maximize
the total throughput of the well-routed requests.

We parametrize the RMSA policies with a CNN and train the CNN on several traffic demand sets
with experiences from static light-path provisioning. By taking into account the unique characteristics
of the RMSA problem, we developed three RL-algorithms: DQN, REINFORCE and A2C. Experimental
results show that the proposed algorithms provide good solutions, with great generalization capability on
different traffic matrices and types. With 100% of well routed throughput’s demand almost everywhere,
The REINFORCE algorithm outperforms the other RL algorithms and appears to be the one with best
performance and generalization capability. It achieves granted average throughput of 96% in the worst
situation and 100% on some topologies for different traffic matrices and types.

We also proposed a very efficient Heuristic algorithm for solving large scale RMSA problems, which
gives very good solutions on data sets with up to 60 nodes with on average approximately 100% of well
routed demand.

Results finally show that the REINFORCE algorithm is not so far from that sophisticated heuristic
algorithm.

Furthering this investigation will essentially rely on four main axes:

• Building an agent with high adaptability that can really in an optimized way manage the routing
and spectrum assignment problem, by intensifying the training process and hyper-parameters
tuning,

• Improving the scalability of the proposed solution scheme and a better feature representation on
the state by adding compactness measure,

• Accounting the use of spectrum in the definition of the reward function to enhance the usage of
the spectrum,

• Accounting for the dynamic case of the problem and the addition of the impairments in the model
to have a more realistic solution.

41

Appendix A. Some additional data

A.0.1 Dijkstra Algorithm(adapted from [37]).

Algorithm 3 Dijkstra Algorithm.

Input:
- A directed graph G(N,L) where each edge has a real-valued positive weight c.
- A source node s and target t in the directed graph.
Output: Shortest path form s to t
Begin

1: for All n ∈ N do
2: dist[n]=INFINITY
3: prev[n]=UNDEFINED
4: end for
5:

6: dist[s] = 0
7: Q = N
8: while Q 6= ∅ do
9: u= vertex in Q with min dist[u]

10: remove u from Q
11: if u = t then
12: Break
13: end if
14: for each neighbor v ∈ Q of u do
15: alt = dist[u] + c(u, v)
16: if dist[n] > alt then
17: d[v] = alt
18: prev[v] = u
19: end if
20: end for
21: end while
22:

23: Let S = ∅
24: if prev[u] is DEFINED or u = s then
25: while u is DEFINED do
26: Insert u at the beginning of S
27: u = prev[u]
28: end while
29: end if
30: return the Shortest paths S

End.

42

Page 43

A.0.2 Deep Q-Learning with experience replay (pseudo code from [19]).

Algorithm 4 Deep Q-Learning with experience replay.

1: Initialize replay memory D to capacity N
2: Initialize weights θ of the action-value Q function
3: for episode=1,M do
4: Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
5: while t ≤ T and Not End episode do
6: With probability ε select a random action at
7: Otherwise select at = argmaxaQ(φ(st), a, ; θ)
8: Execute action at in the emulator and observe reward rt and image xt+1

9: Set st+1 = st, at, xt+1 and proprocess φt+1 = φ(st+1)
10: Store (φ, at, rt, φt+1) in D
11: Sample random minibatch of transitions (φ, at, rt, φt+1) from D

12: Set yj =

{
rj , If episode terminates at step j + 1,

rj + γ.maxa′Q(φj+1, a
′
, θ) Otherwise .

13: Perform a gradient descent step on (yj − Q(φj , aj , θ))
2 with respect to the network pa-

rameters θ
14:

15: end while
16: end for

A.0.3 REINFORCE (pseudo code from [29]).

Algorithm 5 REINFORCE.

Input:
- A differentiable policy parameterization π(a | s, θ)
Begin

1: Initialize weights θ
2: for episode=1,M do
3: Generate an episode s0, a0, r1, . . . , sT−1, aT−1, rT , following π(.|., θ)
4: for each step of the episode t=0,T − 1 do
5: Gt = return from t
6: θ = θ + αγtGt∇θlogπ(at | st, θ)
7: end for
8: end for

End.

Page 44

A.0.4 Actor-Critic Algorithm (pseudo code from [29]).

Algorithm 6 One-Step Actor-Critic.

Input:
- A differentiable policy parameterization π(a | s, θ)
- A differentiable state-value or state-action value function parameterization v̂(s, ω)
Begin

1: Initialize weights θ of the actor
2: Initialize weights ω of the critic
3: for episode=1,M do
4: Initialize st (first state of the episode)
5: I = 1
6: while t ≤ T and Not End episode do
7: Perform action at according to policy π(at | st; θ)
8: Receive reward rt and new state st+1

9: σ = rt + γv̂(st+1, ω)− v̂(st, ω)
10: ω = ω + αωσ∇v̂(st, ω)
11: θ = θ + αθIσ∇lnπ(at | st, θ)
12: I = γI
13: st = st+1

14: end while
15: end for

End.

Acknowledgements

I am really grateful to God for giving me good health, grace, and illumination to pursue my studies.

I would like to express my sincere gratitude to my supervisor professor, Brigitte Jaumard, for being such
a wonderful person, she has always been available to answer my questions, to guide me and share her
knowledge with me. She provided me with an excellent atmosphere for conducting this work

Thank you to IVADO for giving me the opportunity to perform my research at the Group for Research in
Decision Analysis (GERAD), Montreal, Canada. Thank you to the IVADO staff and especially to Jihane
Lamouri, Laurence Renault and Craig Cag. Without their assistance, my research internship could not
have been successfully conducted.

A special appreciation to the Centre president of AIMS-Cameroon, Professor. Dr. Mama Foupouagnigni;
Academic Director, Professor Marco Andrea Garuti; Cooperative Education Manager, Mr. Honore
Youfegnuy, staff, lecturers, and tutors of AIMS-Cameroon for making my stay here worthwhile. I would
like to extend my sincere appreciation and thanks to Mastercard Foundation and all AIMS partners for
the invaluable support that sustained me throughout this program.

I sincerely appreciate my mentor, Rockefeller, for making himself available always, for helpful conversa-
tions, and also for reading and correcting drafts of this essay several times. Thank you as well to Sarah
Njomo for correcting this essay. All these were great motivations for my essay.

My days at AIMS-Cameroon would not have been this great without the touch of all AIMS-Cameroon
2018/2019 batch more especially Gaelle Patricia Talotsing, Guy Tsafack, and Avotra Santatriniaina. I
appreciate your love, support, and encouragement. Thank you all.

45

References

[1] R.W. Alaskar, I. Ahmad, and A. Alyatama. Offline routing and spectrum allocation algorithms for
elastic optical networks. Optical Switching and Networking, 21:79–92, 2016.

[2] Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pages
679–684, 1957.

[3] Xiaoliang Chen, Jiannan Guo, Zuqing Zhu, Roberto Proietti, Alberto Castro, and SJB Yoo. Deep-
rmsa: A deep-reinforcement-learning routing, modulation and spectrum assignment agent for elastic
optical networks. In 2018 Optical Fiber Communications Conference and Exposition (OFC), pages
1–3. IEEE, 2018.

[4] K Christodoulopoulos, I Tomkos, and E Varvarigos. Spectrally/bitrate flexible optical network
planning. In 36th European Conference and Exhibition on Optical Communication, pages 1–3.
IEEE, 2010.

[5] Cisco. Cisco Visual Networking Index: Forecast and Trends, 2017-2022. Ciscos White papers,
2017.

[6] Ori Gerstel, Masahiko Jinno, Andrew Lord, and SJ Ben Yoo. Elastic optical networking: A new
dawn for the optical layer? IEEE Communications Magazine, 50(2):s12–s20, 2012.

[7] Miniwatts Marketing Group. World internet user statistics and 2019 world population statistics.
https://www.internetworldstats.com/stats.htm, 2019. Accessed: October 29, 2019.

[8] Adam W Harley, Konstantinos G Derpanis, and Iasonas Kokkinos. Segmentation-aware convolu-
tional networks using local attention masks. In Proceedings of the IEEE International Conference
on Computer Vision, pages 5038–5047, 2017.

[9] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional archi-
tecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154, 1962.

[10] Jonathan Hui. Rl — policy gradient explained. https://medium.com/@jonathan hui/
rl-policy-gradients-explained-9b13b688b146, 2019. Accessed: August 10, 2019.

[11] G ITU. 694.1: Spectral grids for wdm applications: Dwdm frequency grid. Std., Feb, 2012.

[12] Masahiko Jinno, Hidehiko Takara, Bartlomiej Kozicki, Yukio Tsukishima, Yoshiaki Sone, and Shinji
Matsuoka. Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and
enabling technologies. IEEE communications magazine, 47(11):66–73, 2009.

[13] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285, 1996.

[14] Andrej Karpathy. Cs231n convolutional neural networks for visual recognition. 2016. URL
http://cs231n. github. io, 50, 2017.

[15] Miroslaw Klinkowski and Krzysztof Walkowiak. Routing and spectrum assignment in spectrum
sliced elastic optical path network. IEEE Communications Letters, 15(8):884–886, 2011.

46

https://www.internetworldstats.com/stats.htm
https://medium.com/@jonathan_hui/rl-policy-gradients-explained-9b13b688b146
https://medium.com/@jonathan_hui/rl-policy-gradients-explained-9b13b688b146

REFERENCES Page 47

[16] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew Roughan. The
internet topology zoo. IEEE Journal on Selected Areas in Communications, 29(9):1765–1775,
2011.

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer vision,
pages 21–37. Springer, 2016.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

[21] Shanlan Nie, Zhiguo Jiang, Haopeng Zhang, Bowen Cai, and Yuan Yao. Inshore ship detection
based on mask r-cnn. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing
Symposium, pages 693–696. IEEE, 2018.

[22] Fiber Optic. Modulation formats for 100g and beyond. https://www.fiberoptics4sale.com, 2019.
Accessed: October 29, 2019.

[23] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski. Sndlib 1.0—survivable
network design library. Networks: An International Journal, 55(3):276–286, 2010.

[24] Physics and Radio-Electronics. Multiplexing – definition – types of multiplexing: Fdm, wdm, tdm.
https://www.physics-and-radio-electronics.com/blog/multiplexing/, 2019. Accessed: October 29,
2019.

[25] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 779–788, 2016.

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
pages 91–99, 2015.

[27] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

[28] Terabit Super-Channels. The evolution of next-gen optical networks.

[29] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 2nd edition, 2018.

[30] S. Talebi, E. Bampis, G. Lucarelli, I. Katib, and G.N. Rouskas. Spectrum assignment in opti-
cal networks: A multiprocessor scheduling perspective. Journal of Optical Communications and
Networking, 6(8):754–763, 2014.

https://www.fiberoptics4sale.com
https://www.physics-and-radio-electronics.com/blog/multiplexing/

REFERENCES Page 48

[31] Ioannis Tomkos, Siamak Azodolmolky, Josep Sole-Pareta, Davide Careglio, and Eleni Palkopoulou.
A tutorial on the flexible optical networking paradigm: State of the art, trends, and research
challenges. Proceedings of the IEEE, 102(9):1317–1337, 2014.

[32] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

[33] Luis Velasco, Miroslaw Klinkowski, Marc Ruiz, and Jaume Comellas. Modeling the routing and
spectrum allocation problem for flexgrid optical networks. Photonic Network Communications,
24(3):177–186, 2012.

[34] Luis Velasco and Marc Ruiz. Provisioning, Recovery, and In-Operation Planning in Elastic Optical
Networks. John Wiley & Sons, 2017.

[35] Yang Wang, Xiaojun Cao, and Yi Pan. A study of the routing and spectrum allocation in spectrum-
sliced elastic optical path networks. In 2011 Proceedings Ieee Infocom, pages 1503–1511. IEEE,
2011.

[36] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581,
2015.

[37] Wikipedia contributors. Dijkstra’s algorithm — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Dijkstra%27s algorithm&oldid=930487962, 2019. [Online; ac-
cessed 14-December-2019].

[38] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

[39] Jin Y Yen. An algorithm for finding shortest routes from all source nodes to a given destination in
general networks. Quarterly of Applied Mathematics, 27(4):526–530, 1970.

[40] Guoying Zhang, Marc De Leenheer, Annalisa Morea, and Biswanath Mukherjee. A survey on ofdm-
based elastic core optical networking. IEEE Communications Surveys & Tutorials, 15(1):65–87,
2012.

https://en.wikipedia.org/w/index.php?title=Dijkstra%27s_algorithm&oldid=930487962
https://en.wikipedia.org/w/index.php?title=Dijkstra%27s_algorithm&oldid=930487962

	Abstract
	Introduction
	Background
	Problem
	Research Objective and Contributions
	Thesis Organization

	Literature Review and Fundamentals
	Reinforcement Learning
	Deep Reinforcement Learning
	EONs Provisioning Strategies
	Related Works

	Proposed Reinforcement Learning Framework for RMSA Problem
	Mathematical Formulation of the Offline RMSA Problem
	Method Description
	Reinforcement learning framework
	Baseline Algorithm: a Heuristic Approach

	Experiments and Results
	Experimental Setup
	Data Preparation
	Quantitative Evaluation
	Qualitative Evaluation

	Conclusion and Future Works
	Some additional data
	Acknowledgements
	References

