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Abstract

In this essay, we are concerned with the coincidence of induced and rigged connections on lightlike
hypersurfaces of semi-Riemannian manifolds. We study for a given non vanishing function α on M the
so-called α-associated metric gα = g + αη ⊗ η. We start by giving some fundamental equations for
the case of semi-Riemannian hypersurfaces and later we provide similar (but very different) equations
for lightlike hypersurfaces. We observe that in semi-Riemannian hypersurfaces, the induced connection
always coincides with the Levi-Civita connection which is not always the case for lightlike hypersurfaces.
We show that in the case of α = 1, the coincidence holds when the second fundamental form B of
TM , and the second fundamental form C of the screen distribution are equal and the rotation form
is identically null. In the case where α is a non-vanishing function, the coincidence holds if the screen
distribution is conformal with α as the conformal function and satisfying a certain relation.

French version

Dans ce mémoire, nous nous intéressons à la cöıncidence entre connexion induite et connexion de Levi-
Civita de la métrique associée sur des hypersurfaces de type lumière des variétés semi-riemanniennes.
Nous commencerons par donner quelques équations fondamentales pour le cas des hypersurfaces semi-
riemanniennes et plus tard nous fournissons des équations similaires (mais très différentes) pour les
hypersurfaces de type lumière, nous observerons que dans les hypersurfaces semi-riemanniennes, la
connexion induite cöıncide toujours avec la connexion de Levi-Civita, ce qui n’est pas toujours le cas
des hypersurfaces de type lumière. Nous verrons que dans le cas de α = 1, la cöıncidence est vérifiée
lorsque la seconde forme fondamentale de TM , B et la seconde forme fondamentale de la distribution
écran C sont égales et que la forme de rotation est identiquement nulle. Tandis que dans le cas où α est
une fonction non nulle, la cöıncidence est verifiée lorsque l’écran est conforme avec α comme fonction
conforme et α satisfaisant une certaine relation.
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1. Introduction

A semi-Riemannian manifold (M, g) is a manifold endowed with a non-degenerate metric g, precisely for
any x ∈M , gx is a non-degenerate bilinear form on TxM . A null hypersurface or lightlike hypersurface
of a semi-Riemannian manifold (M, g) is a co-dimension one submanifold M of (M, g) such that the
restriction g of g on M is degenerate, i.e. ∀x ∈ M , the matrix of gx on TxM is a non invertible
matrix. A rigged null hypersurface M is a one endowed with a rigging vector field. The latter being
a vector field N on M such that ∀x ∈ M,Nx is not tangent to M . The projection on M of the
Levi-Civita connection ∇ of M along a null rigging N gives a so-called induced connection ∇ on M
and this connection depends on the chosen rigging. If we set η to be the 1-form defined on M by
η(X) = g(N,X) then it is proved that for a given nowhere vanishing smooth function α on M , the
following is a semi-Riemannian metric on M : gα = g + αη ⊗ η. This is called the α-associated metric.
When α = 1 the metric g1 = g + η ⊗ η is usually called the induced metric or the rigged metric on
M . In this work we study the conditions under which the Levi-Civita connection of the α-associated
metric coincides with the induced connection. This essay is organized as it follows: this introduction is
labeled chapter 1, the second chapter is devoted to the preliminaries of semi-Riemannian submanifolds,
the third one is devoted to the lightlike hypersurfaces of semi-Riemannian manifolds, the fourth one
studies the necessary conditions for coincidence between the induced and the rigged connections, and
our last one is the conclusion.
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2. Preliminaries on Semi-Riemannian
Submanifolds

2.0.1 Definition (Manifold). A manifold M of dimension n is an Hausdorff topological space, such
that ∀x ∈ M, ∃ Ux an open neighborhood of x in M and an homeomorphism ϕx : Ux → Rn, such
that φij = ϕj ◦ ϕ−1i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj) is a smooth function where (Ui, ϕi) is called a chart
of M . We say that locally, M resembles to Rn.

2.0.2 Definition (Submanifold). Let M and M be two manifolds. M is said to be submanifold of M if
∃ i : M →M such that i is an embedding, i.e i is an immersion and an homeomorphism on its image.
The integer n− dimM is called the codimension of M in M .

2.0.3 Definition. A submanifold of codimension 1 is called an hypersurface.

2.0.4 Proposition. Let M be a subset of Rn. These 3 assertions are equivalent:

1. M is a submanifold of dimension m of Rn;

2. ∀x ∈ M, ∃ Ux a neighborhood of x in M and f : Ux → Rn−m a submersion such that
f−1{0} = Ux ∩M ;

3. ∀x ∈M, ∃ Ux a neighborhood of x in M , ∃ Ω an open set of Rm and h : Ω→ Rn an embedding
such that h(Ω) = Ux ∩M .

2.0.5 Definition. Let M be a manifold, a semi-Riemannian metric g over M is a 2-tensor covariant
(i.e of type (0,2)), symmetric and non degenerate (ker(g) = {0}). In other words ∀x ∈ M the linear
form gx : TxM × TxM → R is a semi-Euclidian metric over the vector space TxM and the application
x 7→ gx is C∞.

When g is a semi-Riemannian metric, the couple (M, g) is called a semi-Riemannian manifold .

2.0.6 Definition. Let (M, g) be a semi-Riemannian manifold and M a submanifold of M . We say that
(M, g) is an isometrically immersed submanifold if g = i∗g.

2.0.7 Definition (Semi-Riemannian submanifold). Let (M, g) be a semi-Riemannian manifold, and
(M, g) an isometrically immersed submanifold of (M, g), M is said to be a semi-Riemannian submanifold
of M if g is a semi-Riemannian metric.

2.0.8 Definition (Lightlike submanifold). Let (M, g) be a semi-Riemannian manifold, and (M, g) an
immersed submanifold of (M, g), M is said to be a Lightlike submanifold of M if the restriction of g
on M is degenerate i.e there exists a nonzero section X of TM such that g(X,Y ) = 0, ∀Y ∈ Γ(TM).

2.0.9 Definition. Let (M, g) be a semi-Riemannian manifold, a vector field X is said to be:

• spacelike if g(X,X) > 0 or X = 0;

• timelike if g(X,X) < 0;

• lightlike if g(X,X) = 0 and X 6= 0.

2.0.10 Definition. The index of a semi-Riemannian manifold (M, g) is the number of negative numbers
in a diagonal matrix associated to g.

The index is also equal to the number of timelike vector contained in an orthonormal basis of TM .
Throughout, (M, g) is a semi-Riemannian manifold of index q > 0 and dimension n, and (M, g) is an
immersed submanifold of (M, g).
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2.1 Some Particular Distributions

2.1.1 Definition (Normal Distribution). Let TM be the tangent bundle of M, we define the normal
distribution TM⊥ as the collection of normal subspaces TxM

⊥ of TxM defined by:

TxM
⊥ = {Xx ∈ TxM ; g(Xx, Yx) = 0 ∀Yx ∈ TxM} ∀x ∈M. (2.1.1)

2.1.2 Definition (Radical distribution). The radical distribution Rad(TM) of TM is the collection of
Rad(TxM) defined by:

Rad(TxM) = {Xx ∈ TxM ; g(Xx, Yx) = 0 ∀Yx ∈ TxM} ∀x ∈M. (2.1.2)

2.1.3 Remark.

• Observe that Rad(TM) = TM ∩ TM⊥

• Rad(TxM) = {0} ⇔ (M, g) is a semi-Riemannian submanifold of (M, g).

2.1.4 Proposition. From the above remark, it follows that (M, g) is a lightlike submanifold of (M, g)
if and only if Rad(TxM) 6= {0}.

2.2 Semi-Riemannian Hypersurfaces

Let (M, g) be a semi-Riemann manifold and (M, g) a semi-Riemannian hypersurface of (M, g); in this
case dimTM⊥ = 1 and

TM/M = TM⊥TM⊥. (2.2.1)

The symbol ⊥ simply means that TM⊥ is orthogonal to TM and is the unique orthogonal complemen-
tary of TM .

2.2.1 Definition (Gauss map). Let x ∈M , there exists an open neighborhood U of x in M on which
is defined a unique section of the normal bundle TM⊥, denoted N such that g(Ny, Ny) = 1 ∀y ∈ U .
N : U → TM⊥. N is called the Gauss map of M .

Let ∇ be the Levi-Civita connection of (M, g). From Equation (2.2.1), we can decompose ∇XY as:

∇XY = ∇XY +B(X,Y )N (called Gauss formula), (2.2.2)

where ∇ is called the induced connection and B the second fundamental form of M . It is easy to show
that ∇ is a torsion-free connection on M , and B is a 2−covariant symmetric tensor. Moreover ∇ is
g-metric. Indeed, since ∇ is the Levi-Civita connection of (M, g), ∀ X,Y, Z ∈ Γ(TM),

X · g(Y,Z) = g(∇XY,Z) + g(∇XZ, Y )

=⇒ X · g(Y,Z) = g(∇XY +B(X,Y )N,Z) + g(∇XZ +B(X,Z)N,Y )

= g(∇XY,Z) + g(∇XZ, Y )

= g(∇XY,Z) + g(∇XZ, Y ).

Therefore ∇ is the Levi-Civita connection of (M, g).

2.2.2 Proposition. For every section X of TM , one has ∇XN ∈ Γ(TM).
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Proof. g(N,N) = 1 =⇒ X · g(N,N) = 0 =⇒ 2g(∇XN,N) = 0 =⇒ ∇XN ∈ Γ(TM).

The following formula is useful

∇XN = −AN (X) (called Weingarten formula), (2.2.3)

where AN : Γ(TM)→ Γ(TM) is a field of endomorphisms called the shape operator of M .

2.2.3 Proposition. The shape operator AN is g-self adjoint and related to the second fundamental
form B by

B(X,Y ) = g(AN (X), Y ), ∀ X,Y ∈ Γ(TM). (2.2.4)

Proof. g(Y,N) = 0 =⇒ 0 = X ·g(Y,N) = g(∇XY,N)+g(∇XN,Y ) = B(X,Y )−g(AN (X), Y ).

2.2.4 Definition (geodesic). Let (M,∇) be a manifold endowed with a linear connection. A curve
γ : I →M is said to be a geodesic of M if

∇γ′γ′ = 0. (2.2.5)

Hence γ : I →M is a geodesic means that the velocity vector field γ′ is parallely transported along the
curve. Without any other precision in the case of semi-Riemannian Manifolds, the connection considered
is the Levi-Civita connection and notions related to connection such as geodesic curve, are defined with
respect the Levi-Civita connection.

2.2.5 Example. Geodesic curves for the real Euclidean space Rn are straight lines. Geodesic curves for
the sphere Sn are great circles.

2.2.6 Definition (Totally geodesic). A semi-Riemannian hypersurface M of M is said to be totally
geodesic if its second fundamental form B vanishes.

2.2.7 Proposition ([6, page 104]). The following are equivalent:

1. M is totally geodesic in M ;

2. Every geodesic of M is also a geodesic of M .

We can remark that the sphere Sn is not totally geodesic in the Euclidian space Rn.

2.2.8 Definition (Totally umbilic). A semi-Riemannian hypersurface M of M is said to be totally
umbilic if there exists a smooth function ρ such that:

B = ρg

2.2.9 Proposition. For a semi-Riemannian hypersurface, we have the so-called Gauss-Codazzi equation:

∀X,Y, Z, T ∈ Γ(TM), g(RXY Z, T ) = g(RXY Z, T )−B(X,T )B(Y, Z) +B(X,Z)B(Y, T )

g(RXY Z,N) = g((∇XAN )Y − (∇YAN )X,Z)

where R and R are the Riemannian curvatures of (M, g) and (M, g) respectively. And by definition
(∇XAN )Y = ∇X(AN (Y ))−AN (∇XY ).
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Proof.

RXY Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= ∇X(∇Y Z +B(Y,Z)N)−∇Y (∇XZ +B(X,Z)N)− (∇[X,Y ]Z +B([X,Y ], Z)N)

= ∇X∇Y Z +∇X(B(Y,Z)N)−∇Y∇XZ −∇Y (B(X,Z)N)− (∇[X,Y ]Z +B([X,Y ], Z)N)

= ∇X∇Y Z +B(X,∇Y Z)N +∇X(B(Y,Z)N)−∇Y∇XZ −B(Y,∇XZ)N −∇Y (B(X,Z)N)

− (∇[X,Y ]Z +B([X,Y ], Z)N)

= RXY Z +∇X(B(Y,Z)N)−∇Y (B(X,Z)N) + (B(X,∇Y Z)

−B(Y,∇XZ)−B([X,Y ], Z))N

=RXY Z + (X ·B(Y, Z)N +B(X,Y )∇XN)− (Y ·B(X,Z)N +B(X,Z)∇YN)

+ (B(X,∇Y Z)−B(Y,∇XZ)−B([X,Y ], Z))N

RXY Z = RXY Z + (X ·B(Y,Z)N −B(Y, Z)AN (X))− (Y ·B(X,Z)N −B(X,Z)AN (Y ))

+ (B(X,∇Y Z)−B(Y,∇XZ)−B([X,Y ], Z))N. (2.2.6)

If we take Equation (2.2.6) and we do the scalar product with T , we obtain:

g(RXY Z, T ) = g(RXY Z, T )−B(Y,Z)B(X,T ) +B(X,Z)B(Y, T ).

If we take Equation (2.2.6) and we do the scalar product with N , we obtain:

g(RXY Z,N) = X ·B(Y,Z)− Y ·B(X,Z) +B(X,∇Y Z)−B(Y,∇XZ)−B([X,Y ], Z).

Using Proposition 2.2.3,

g(RXY Z,N) = X · g(AN (Y ), Z)− Y · g(AN (X), Z) + g(AN (X),∇Y Z)

− g(AN (Y ),∇XZ)− g(AN ([X,Y ]), Z)

= g(∇XAN (Y ), Z) + g(∇XZ,AN (Y ))− g(∇YAN (X), Z)− g(∇Y Z,AN (X))

+ g(AN (X),∇Y Z)− g(AN (Y ),∇XZ)− g(AN (∇XY −∇XY ), Z)

= g(∇XAN (Y ), Z)− g(∇YAN (X), Z)− g(AN (∇XY −∇XY ), Z)

= g((∇XAN )Y − (∇YAN )X,Z).

We have just studied some fundamental equations of the geometry of non degenerate sub-manifolds,
in the next chapter we are going to study similar equations (but very different) for the case of lightlike
hypersurfaces.



3. Lightlike Hypersurfaces of Semi-Riemannian
Manifolds

In this chapter, (M, g) is a lightlike hypersurface of (M, g); this means that Rad(TM) = TM∩TM⊥ =
TM⊥, therefore we can see that it is no more possible to decompose TM as in the case of a semi-
Riemannian hypersurface; new tools are then needed.

3.0.1 Definition (Screen Distribution). A screen distribution S(TM) is a complementary distribution
to Rad(TM) in TM .

Let S(TM) be a screen distribution for M . It is clear that dimS(TM) = n − 2 and the following
decomposition holds:

TM = Rad(TM)⊕ S(TM) (3.0.1)

3.0.2 Proposition. The restriction of g on S(TM) is non-degenerate.

Proof. Let x ∈M and Xx ∈ S(TxM) such that gx(Xx, Yx) = 0 ∀ Yx ∈ S(TxM). Since gx(Xx, Zx) =
0, ∀ Zx ∈ Rad(TxM) it follows from (3.0.1) that gx(Xx, Yx) = 0, ∀ Yx ∈ TxM . Hence Xx ∈
Rad(TxM)∩S(TxM) = {0} which implies that Xx = 0. Therefore (S(TM), g) is non-degenerate.

3.1 Decomposition of TM

• Approach of Duggal and Bejancu

3.1.1 Theorem ([3, page 79]). Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian
manifold (M, g). Then there exists a unique vector bundle tr(TM) of rank 1 over M such that for any
non-zero section ξ of TM⊥ on a coordinate neighborhood U ⊂ M , there exists a unique section N of
tr(TM) on U satisfying:

g(N, ξ) = 1 (3.1.1)

and
g(N,N) = g(N,W ) = 0, ∀W ∈ Γ(S(TM)|U ) (3.1.2)

TM |M = TM ⊕ tr(TM) (3.1.3)

tr(TM) is called the transversal bundle of TM .

• Rigging techniques

3.1.2 Definition (Rigging). We call rigging for M a vector field ζ defined on an open set of M
containing M such that

ζx /∈ TxM, ∀ x ∈M

Let η be the 1-form metrically equivalent to ζ (i.e η = g(ζ, .)) and g̃ = g + η ⊗ η. η is a 1−form over
M and g̃ is a 2−covariant tensor over M called the 1−twisted metric or just the twisted metric on M .
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Let gη = i∗g̃; η = i∗η; η is a 1−form over M and gη is a 2−covariant tensor over M called the rigged
metric or the 1−associated metric or just the associated metric on M .

gη = g + η ⊗ η (3.1.4)

Let us set

S(TM) = ker η = {X ∈ TM, η(X) = 0}

since ζ is not a section of TM , it follows that g(X, ζ) = η(X) 6= 0, ∀X ∈ Γ(Rad(TM)) r {0}. This
shows that S(TM) is a screen distribution of TM .

TM = Rad(TM)⊕⊥ S(TM) (3.1.5)

3.1.3 Lemma. gη is non-degenerate.

Proof. Let X be a nonzero section of TM such that gη(X,Y ) = 0 ∀ Y ∈ Γ(TM).

From the decomposition (3.1.5), there exists X1 ∈ Rad(TM), X2 ∈ S(TM) such that X = X1 +X2,

0 = gη(X,Y ) = g(X,Y ) + η(X)η(Y ) = g(X1, Y ) + g(X2, Y )) + η(X1)η(Y )) + η(X2)η(Y )

= g(X2, Y )) + η(X1)η(Y ).

In particular for X1 ∈ Rad(TM) ⊂ TM ,

0 = g(X2, X1) + η(X1)
2 = η(X1)

2, so it follows that X1 ∈ S(TM) ∩ Rad(TM) = {0}, therefore
X = X2. And we have

0 = gη(X2, Y ) = g(X2, Y ) + η(X2)η(Y ) = g(X2, Y ) = 0 ∀ Y ∈ TM. (3.1.6)

But we also have that g(X2, ζ) = η(X2) = 0. Since TM = TM ⊕ 〈ζ〉, it follows that g(X2, Y ) =
0 ∀Y ∈ Γ(TM) and the fact that g is non-degenerate leads to X2 = 0, hence X = 0.

Therefore gη is non degenerate.

3.1.4 Definition (Rigged). The vector field ξ over M metrically equivalent to η i.e (η = gη(ξ, .)) is
called the rigged vector field associated to ζ.

3.1.5 Lemma. The rigged vector field ξ is the unique section of the radical distribution such that
g(ξ, ζ) = 1.

Proof. First of all, since ζ is not a section of TM , it follows that

g(X, ζ) 6= 0, ∀X ∈ Γ(Rad(TM)) r {0}. (3.1.7)

We have η(X) = gη(ξ,X) = g(ξ,X) + η(X)η(ξ). Hence η(X)(1 − η(ξ)) = g(ξ,X) ∀X ∈ Γ(TM)
In particular for X ∈ Γ(Rad(TM)) r {0}, g(X, ζ)(1 − η(ξ)) = 0. Using (3.1.7) the latter leads to
1− η(ξ) = 0. This is

η(ξ) = g(ξ, ζ) = 1. (3.1.8)

For every section X of TM, η(X) = g(ξ,X) + η(X) =⇒ g(ξ,X) = 0. Hence,

Rad(TM) = 〈ξ〉. (3.1.9)
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3.1.6 Remark. Locally, it is always possible to define a vector field which span the radical distribution;
but ξ is globally defined.

The vector field N = ζ− 1
2g(ζ, ζ)ξ is a lightlike transversal vector field of M and it satisfies g(N, ξ) = 1.

Proof.

g(N,N) = g

(
ζ − 1

2
g(ζ, ζ)ξ, ζ − 1

2
g(ζ, ζ)ξ

)
= g(ζ, ζ)− g(ζ, ζ)g(ξ, ζ) +

1

4
g(ζ, ζ)g(ξ, ξ) = 0

g(N, ξ) = g

(
ζ − 1

2
g(ζ, ζ)ξ, ξ

)
= g(ζ, ξ)− 1

2
g(ζ, ζ)g(ξ, ξ) = g(ζ, ξ) = 1.

3.1.7 Remark. For lightlike hypersurfaces, giving a rigging vector field, we can always have a null
rigging vector field, so without lost of generality, we will always talk about null rigged hypersurfaces.

From Equation (3.1.3), We have the following decompositions. ∀ X,Y ∈ Γ(TM)

∇XY = ∇XY +B(X,Y )N (3.1.10)

∇XN = τ(X)N −AN (X) (3.1.11)

where AN is called the shape operator of M and B is the the second fundamental form of M .

3.1.8 Proposition. AN (U) ∈ TM, ∇ is a connection over TM , and B is a symmetric tensor.

Proof. We know that ∇ is a connection over TM so it satisfies

∇fXY = f∇XY
∇XfY = X.(f)Y + f∇XY
∇X(Y + Z) = ∇XY +∇XZ
∇X+Y Z = ∇XZ +∇Y Z

∇fXY = f∇XY
=⇒ ∇fXY +B(fX, Y )N = f(∇XY +B(X,Y )N)

=⇒ ∇fXY − f∇XY = (fB(X,Y )−B(fX, Y ))N

We know that TM ∩ tr(TM) = {0}
=⇒ ∇fXY − f∇XY = (fB(X,Y )−B(fX, Y ))N = 0

=⇒ ∇fXY = f∇XY and fB(X,Y ) = B(fX, Y )

∇XfY = X.(f)Y + f∇XY
=⇒ ∇XfY +B(X, fY )N = X.(f)Y + f(∇XY +B(X,Y )N)

=⇒ ∇XfY −X.(f)Y − f∇XY = (fB(X,Y )−B(X, fY ))N

TM ∩ tr(TM) = {0} =⇒ ∇XfY = X.(f)Y + f∇XY and fB(X,Y ) = B(X, fY )
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∇X(Y + Z) = ∇XY +∇XZ
=⇒ ∇X(Y + Z) +B(X,Y + Z)N = ∇XY +B(X,Y )N +∇XZ +B(X,Z)N

=⇒ ∇X(Y + Z)−∇XY −∇XZ = (−B(X,Y + Z) +B(X,Y ) +B(X,Z))N

TM ∩ tr(TM) = {0} =⇒
∇X(Y + Z) = ∇XY +∇XZ and B(X,Y + Z) = B(X,Y ) +B(X,Z)

∇X+Y Z = ∇XZ +∇Y Z
=⇒ ∇X+Y Z +B(X + Y,Z)N = ∇XZ +B(X,Z)N +∇Y Z +B(Y,Z)N

=⇒ ∇X+Y Z −∇XZ −∇Y Z = (−B(X + Y, Z) +B(X,Z) +B(Y, Z))N

TM ∩ tr(TM) = {0} =⇒
∇X+Y Z = ∇XZ +∇Y Z and B(X + Y, Z) = B(X,Z) +B(Y, Z)

∇XY = ∇XY +B(X,Y )N

∇YX = ∇YX +B(Y,X)N

∇XY −∇YX = ∇XY −∇YX + (B(X,Y )−B(Y,X))N

∇ is the Levi-Civita connection of M

[X,Y ] = ∇XY −∇YX + (B(X,Y )−B(Y,X))N

[X,Y ]−∇XY +∇YX = (B(X,Y )−B(Y,X))N

TM ∩ tr(TM) = {0} =⇒ ∇XY −∇YX − [X,Y ] = 0 and B(X,Y ) = B(Y,X)

Therefore ∇ is a connection without torsion over TM , and B is a symmetric tensor over TM .

3.1.9 Definition (Totally geodesic). The lightlike hypersurface M is said to be totally geodesic if
∀X,Y ∈ TM ,

B(X,Y ) = 0. (3.1.12)

3.1.10 Definition (Totally umbilical). M is said to be totally umbilical if there exists a function
f ∈ C∞(M) such that

B(X,Y ) = fg(X,Y ) ∀X,Y ∈ TM. (3.1.13)

3.1.11 Proposition. ∇ is a connection over M which is not g-metric and it satisfies:

(∇Xg)(Y, Z) = B(X,Y )g(N,Z) +B(X,Z)g(N,Y ) ∀X,Y, Z ∈ Γ(TM) (3.1.14)

B(X,Y ) = −g(∇Xξ, Y ) (3.1.15)

Proof.

∇XY = ∇XY +B(X,Y )N

g(∇XY,Z) = g(∇XY,Z) + g(B(X,Y )N,Z)

g(∇XZ, Y ) = g(∇XZ, Y ) + g(B(X,Z)N,Y )

since ∇ is the Levi-Civita connection of g, then

X.g(Y,Z) = g(∇XY,Z) + g(Y,∇XZ)

= g(∇XY,Z) + g(B(X,Y )N,Z) + g(∇XZ, Y ) + g(B(X,Z)N,Y )
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X.g(Y,Z)− g(∇XY,Z)− g(Y,∇XZ) = g(N,Z)B(X,Y ) + g(N,Y )B(X,Z)

(∇Xg)(Y,Z) = g(N,Z)B(X,Y ) + g(N,Y )B(X,Z).

From Equation (3.1.10), we have

∇XY = ∇XY +B(X,Y )N

g(∇XY, ξ) = g(∇XY, ξ +B(X,Y )g(N, ξ)

X.g(Y, ξ)− g(∇Xξ, Y ) = g(∇XY, ξ) +B(X,Y )

−g(∇Xξ, Y ) = B(X,Y ).

3.1.12 Proposition. The second fundamental form B satisfies B(ξ, .) = 0.

Proof. From (3.1.14), if we replace Y and Z by ξ, we obtain:

g(N, ξ)B(X, ξ) + g(N, ξ)B(X, ξ) = (∇Xg)(ξ, ξ)

2B(X, ξ) = X.g(ξ, ξ)− 2g(∇Xξ, ξ) = 0.

Since B(ξ, .) = 0, from Equation (3.1.10), we have:

∇Xξ = ∇Xξ ∈ TM.

So using the decomposition (3.1.5), we can decomposed it as follow∇Xξ = aξ−
?
Aξ(X) with

?
Aξ(X) ∈ S(TM)

and a = g(∇Xξ,N) and it is easy to verify that a = −τ(X).

∇Xξ = −τ(X)ξ −
?
Aξ(X) . (3.1.16)

where
?
Aξ is a field endomorphism called the shape operator of S(TM).

3.1.13 Proposition. The shape operator
?
Aξ is g-self-adjoint endomorphism and related to the second

fundamental form B by: ∀X,Y, Z ∈ TM ,

B(X,Y ) = g(
?
Aξ(X), Y )

Proof. From Equation (3.1.16),

∇Xξ = −τ(X)ξ −
?
Aξ(X)

g(∇Xξ, Y ) = g(−τ(X)ξ −
?
Aξ(X), Y ) = −τ(X)g(ξ, Y )− g(

?
Aξ(X), Y )

from (3.1.15) −B(X,Y ) = g(∇Xξ, Y ) = −g(
?
Aξ(X), Y )

B(X,Y ) = g(
?
Aξ(X), Y ).
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∀X ,Y ∈ Γ(TM) , ∇XPY ∈ Γ(TM), we can decomposed it as follows:

∇XPY = ∇∗XPY + C(X,PY )ξ. (3.1.17)

Where ∇∗XPY ∈ S(TM) and C is a 2-tensor called the second fundamental form associated to the
screen distribution, and C satisfies:

C(X,PY ) = −g(∇XN,PY ) = g(AN (X), Y ) (3.1.18)

C(PX,PY )− C(PY, PX) = g(N, [PX,PY ]). (3.1.19)

Proof.

0 = g(N,PY )

0 = X · g(N,PY ) = g(∇XN,PY ) + g(N,∇XPY )

= −g(AN (X), PY ) + g(N,∇XPY )

= −g(AN (X), PY ) + C(X,PY ).

And we have the result. From the previous result:

C(PX,PY )− C(PY, PX) = g(∇PXPY,N)− g(∇PY PX,N)

= g([PX,PY ], N)

3.1.14 Lemma. If S(TM) is integrable, i.e ∀ X,Y ∈ Γ(TM), [PX,PY ] ∈ S(TM), then C is sym-
metric in S(TM) and ∇∗ is a torsion-free connection which is g-metric.

Proof. From the previous result,

C(PX,PY )− C(PY, PX) = g([PX,PY ], N) = 0.

T∇∗(PX,PY ) = ∇∗PXPY −∇∗PY PX − [PX,PY ]

= ∇PXPY − C(PX,PY )−∇PY PX + C(PY, PX)− [PX,PY ]

= ∇PXPY −∇PY PX − [PX,PY ]

= T∇(PX,PY ) = 0

∇∗PXg(PY, PZ) = PX · g(PY, PZ)− g(∇∗PXPY, PZ)− g(∇∗PXPZ, PY )

= PX · g(PY, PZ)− g(∇PXPY − C(PX,PY )ξ, PZ)− g(∇PXPZ − C(PX,PZ)ξ, PY )

= PX · g(PY, PZ)− g(∇PXPY, PZ)− g(∇PXPZ, PY )

= PX · g(PY, PZ)− g(∇PXPY, PZ)− g(∇PXPZ, PY )

= 0 Since ∇ is the levi-Civita of g

3.1.15 Remark. Note that for the case of lightlike hypersurface, AN is no more g-self adjoint like in
the semi-Riemannian case, but it is g-self adjoint when the screen distribution is integrable.
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The Riemannian curvature R of ∇ is given by

RXY Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z ∀X,Y, Z ∈ TM. (3.1.20)

3.1.16 Proposition. The Riemannian curvature R of ∇ and The Riemannian curvature R of ∇ are
related by:

RXY ξ = RXY ξ. (3.1.21)

Proof. We have seen that ∇Xξ = ∇Xξ = −τ(X)ξ −
?
Aξ(X),

and in Proposition 3.1.13, B(X,
?
Aξ(Y )) = B(

?
Aξ(X), Y ) so

RXY ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ

= ∇X(−τ(Y )ξ −
?
Aξ(Y ))−∇Y (−τ(X)ξ −

?
Aξ(X))−∇[X,Y ]ξ

= −∇Xτ(Y )ξ −∇X
?
Aξ(Y ) +∇Y τ(X)ξ +∇Y

?
Aξ(X)−∇[X,Y ]ξ

= −∇Xτ(Y )ξ − (∇X
?
Aξ(Y )−B(X,

?
Aξ(Y ))) +∇Y τ(X)ξ +∇Y

?
Aξ(X)−B(Y,

?
Aξ(X))−∇[X,Y ]ξ

= −∇Xτ(Y )ξ −∇X
?
Aξ(Y ) +∇Y τ(X)ξ +∇Y

?
Aξ(X)−∇[X,Y ]ξ

= ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ

= RXY ξ.

3.1.17 Proposition. (Gauss-Codazzi Equations)

For a lightlike hypersurface, we have the so-called Gauss-Codazzi equations:

∀ X,Y, Z, U ∈ Γ(TM),

g(RXY Z,PU) = g(RXY Z,PU) +B(X,Z)g(AN (Y ), PU)−B(Y, Z)g(AN (X), PU)

g(RXY Z, ξ) = (∇XB)(Y,Z)− (∇YB)(X,Z) + τ(X)B(Y,Z)− τ(Y )B(X,Z)

g(RXY Z,N) = g(RXY Z,N). (3.1.22)

Proof.

RXY Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= ∇X(∇Y Z +B(Y,Z)N)−∇Y (∇XZ +B(X,Z)N)− (∇[X,Y ]Z +B([X,Y ], Z)N)

= ∇X∇Y Z +∇X(B(Y,Z)N)−∇Y∇XZ −∇Y (B(X,Z)N)− (∇[X,Y ]Z +B([X,Y ], Z)N)

= ∇X∇Y Z +B(X,∇Y Z)N +∇X(B(Y,Z)N)−∇Y∇XZ −B(Y,∇XZ)N −∇Y (B(X,Z)N)

−(∇[X,Y ]Z +B([X,Y ], Z)N)

= RXY Z +∇X(B(Y,Z)N)−∇Y (B(X,Z)N) + (B(X,∇Y Z)

−B(Y,∇XZ)−B([X,Y ], Z))N

= RXY Z + (X ·B(Y, Z)N +B(X,Y )∇XN)− (Y ·B(X,Z)N +B(X,Z)∇YN)

+(B(X,∇Y Z)−B(Y,∇XZ)−B([X,Y ], Z))N

= RXY Z + (X ·B(Y,Z)N +B(Y, Z)(τ(X)N −AN (X))− (Y ·B(X,Z)N +B(X,Z)(τ(Y )N

−AN (Y )) + (B(X,∇Y Z)−B(Y,∇XZ)−B([X,Y ], Z))N
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= RXY Z + [X ·B(Y,Z)− Y ·B(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X,Z) +B(X,∇Y Z)

−B(Y,∇XZ)−B([X,Y ], Z)]N −AN (X)B(Y, Z) +AN (Y )B(X,Z). (3.1.23)

By doing the scalar product of Equation (3.1.23) with PU ∈ S(TM) we obtain:

g(RXY Z,PU) = g(RXY Z,PU) + g(−AN (X)B(Y, Z) +AN (Y )B(X,Z), PU)

= g(RXY Z,PU)−B(Y,Z)g(AN (X), PU) +B(X,Z)g(AN (Y ), PU).

By doing the scalar product of Equation (3.1.23) with ξ we obtain:

g(RXY Z, ξ) = X ·B(Y,Z)− Y ·B(X,Z) + τ(X)B(Y,Z)− τ(Y )B(X,Z)

+B(X,∇Y Z)−B(Y,∇XZ)−B([X,Y ], Z)

= X ·B(Y,Z)− Y ·B(X,Z) + τ(X)B(Y,Z)− τ(Y )B(X,Z)

+B(X,∇Y Z)−B(Y,∇XZ)−B(∇XY −∇YX,Z)

= X ·B(Y,Z)−B(Y,∇XZ)−B(∇XY, Z)− Y ·B(X,Z) +B(X,∇Y Z) +B(∇YX,Z)

+τ(X)B(Y,Z)− τ(Y )B(X,Z)

= (∇XB)(Y,Z)− (∇YB)(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X,Z).

By doing the scalar product of Equation (3.1.23) with N we obtain:

g(RXY Z,N) = g(RXY Z,N) + g(−AN (X)B(Y,Z) +AN (Y )B(X,Z), N)

= g(RXY Z,N)−B(Y, Z)g(AN (X), N) +B(X,Z)g(AN (Y ), N)

= g(RXY Z,N)−B(Y, Z)g(∇XN,N) +B(X,Z)g(∇XN,N)

We know that g(N,N) = 0 =⇒ X · g(N,N) = 0 =⇒ g(∇XN,N) = 0

g(RXY Z,N) = g(RXY Z,N).

3.1.18 Proposition. From the Gauss-Codazzi equations, we deduce that:

g(RXY PZ,N) = (∇∗XC)(Y, PZ)− (∇∗Y C)(X,PZ) + τ(X)C(Y, PZ)− τ(Y )C(X,PZ)

g(RXY ξ,N) = C(Y,
?
Aξ(X))− C(X,

?
Aξ(Y ))− dτ(X,Y ). (3.1.24)

Proof. In Equation (3.1.22), by replacing Z by PZ we have

RXY PZ = ∇X∇Y PZ −∇Y∇XPZ −∇[X,Y ]PZ

= ∇X(∇∗Y PZ + C(Y, PZ)ξ)−∇Y (∇∗XPZ + C(X,PZ)ξ)−∇∗[X,Y ]PZ − C([X,Y ], PZ)ξ

= ∇∗X∇∗Y PZ + C(X,∇∗Y PZ)ξ +X · C(Y, PZ)ξ + C(Y, PZ)∇Xξ −∇∗Y∇∗XPZ
−C(Y,∇∗XPZ)ξ − Y · C(X,PZ)ξ − C(X,PZ)∇Y ξ −∇∗[X,Y ]PZ − C([X,Y ], PZ)ξ

= ∇∗X∇∗Y PZ + C(X,∇∗Y PZ)ξ +X · C(Y, PZ)ξ + C(Y, PZ)(−τ(X)ξ −
?
Aξ(X))−∇∗Y∇∗XPZ

−C(Y,∇∗XPZ)ξ − Y · C(X,PZ)ξ − C(X,PZ)(−τ(Y )ξ −
?
Aξ(Y ))−∇∗[X,Y ]PZ − C([X,Y ], PZ)ξ
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g(RXY PZ,N) = g(RXY PZ,N)

= C(X,∇∗Y PZ) +X · C(Y, PZ)− C(Y,∇∗XPZ)− Y · C(X,PZ)− C([X,Y ], PZ)

−C(Y, PZ)τ(X) + C(X,PZ)τ(Y )

= C(X,∇∗Y PZ) +X · C(Y, PZ)− C(Y,∇∗XPZ)− Y · C(X,PZ)− C(∇XY −∇YX,PZ)

−C(Y, PZ)τ(X) + C(X,PZ)τ(Y )

= X · C(Y, PZ)− C(Y,∇∗XPZ)− C(∇XY, PZ)− Y · C(X,PZ) + C(X,∇∗Y PZ)

+C(∇YX,PZ)− C(Y, PZ)τ(X) + C(X,PZ)τ(Y )

g(RXY PZ,N) = (∇∗XC)(Y, PZ)− (∇∗Y C)(X,PZ)− C(Y, PZ)τ(X) + C(X,PZ)τ(Y )

where
∇∗XC)(Y, PZ) = X · C(Y, PZ)− C(∇XY, PZ)− C(Y,∇∗XPZ).

In Equation (3.1.22), by replacing Z by ξ we have

RXY ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ

= ∇X(−τ(Y )ξ −
?
Aξ(Y ))−∇Y (−τ(X)ξ −

?
Aξ(X)) + τ([X,Y ])ξ +

?
Aξ([X,Y ])

= −X · τ(Y )ξ − τ(Y )∇Xξ −∇X
?
Aξ(Y ) + Y · τ(X)ξ + τ(X)∇Y ξ +∇Y

?
Aξ(X)

+τ([X,Y ])ξ +
?
Aξ([X,Y ])

= −X · τ(Y )ξ − τ(Y )(−τ(X)ξ −
?
Aξ(X))−∇∗X

?
Aξ(Y )− C(X,

?
Aξ(Y ))ξ + Y · τ(X)ξ

+τ(X)(−τ(Y )ξ −
?
Aξ(Y )) +∇∗X

?
Aξ(Y ) + C(Y,

?
Aξ(X))ξ + τ([X,Y ])ξ +

?
Aξ([X,Y ])

= (−X · τ(Y )− C(X,
?
Aξ(Y )) + C(Y,

?
Aξ(X)) + Y · τ(X) + τ([X,Y ]))ξ

+τ(Y )
?
Aξ(X)−∇∗X

?
Aξ(Y )− τ(X)

?
Aξ(Y ) +∇∗Y

?
Aξ(X) +

?
Aξ([X,Y ])

g(RXY ξ,N) = −X · τ(Y )− C(X,
?
Aξ(Y )) + C(Y,

?
Aξ(X)) + Y · τ(X) + τ([X,Y ])

= C(Y,
?
Aξ(X))− C(X,

?
Aξ(Y ))− dτ(X,Y ).

3.1.19 Definition. Let x ∈ M and PX ∈ S(TM) be a unitary vector field i.e g(PX,PX) = 1, let
σ = Span(X, ξ) be a null plane contained in TxM the null sectional curvature with respect to ξ of σ
is given by:

Kξ(σ) = g(RξPXPX, ξ)

= (∇ξB)(PX,PX)− (∇PXB)(ξ, PX) + τ(ξ)B(PX,PX)− τ(PX)B(ξ, PX)

= (∇ξB)(PX,PX)− (∇PXB)(ξ, PX) + τ(ξ)B(PX,PX).

3.1.20 Remark. If M is totally geodesic (i.e B ≡ 0) Then Kξ(σ) = 0 and if M is totally umbilical (ie
B=ρg) then

Kξ(σ) = ξ(ρ)− ρ2 + τ(ξ)ρ.
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Proof.

Kξ(σ) = (∇ξB)(PX,PX)− (∇PXB)(ξ, PX) + τ(ξ)B(PX,PX)

= ξ ·B(PX,PX)− 2B(∇ξPX,PX)− PX ·B(ξ, PX) +B(∇PXξ, PX) +B(ξ,∇PXPX)

+τ(ξ)B(PX,PX)

= ξ(ρ)− 2ρg(∇ξPX,PX) + ρg(∇PXξ, PX) + τ(ξ)ρ

g(PX,PX) = 1 =⇒ ξ · g(PX,PX) = 2g(∇ξPX,PX) = 2g(∇ξPX,PX) = 0

g(ξ, PX) = 0 =⇒ PX · g(ξ, PX) = 0 =⇒ g(∇PXξ, PX) = −g(∇PXPX, ξ) = −B(PX,PX) = −ρ
Kξ(σ) = ξ(ρ)− ρ2 + τ(ξ)ρ.



4. Necessary Condition for Coincidence between
the Induced Connection ∇ and the Rigged
Connection ∇α

4.1 Condition for Coincidence between the Induced and the Rigged
Connections for α = 1

We know that ∇1 is the unique torsion-free connection that is g1-metric. Therefore ∇1 = ∇ means
that ∇ would also be g1-metric.

• Let us find condition such that ∇ g1-metric.

∇ is g1-metric means that:

∇g1X (Y, Z) = 0 ∀ X,Y, Z ∈ Γ(TM). (4.1.1)

From the decomposition (3.0.1), we have ∀X ∈ TM, X = PX + aξ where a = g(X,N).

Therefore X = PX + η(X)ξ where η = g(N, .) and PX ∈ S(TM).

We have:

∇g1X (Y, Z) = X.g1(Y,Z)− g1(∇YX , Z)− g1(Y,∇ZX). (4.1.2)

We have:

∇g1X (Y,Z) = X.{g1 (PY + η(Y )ξ, PZ + η(Z)ξ)} − g1(∇X(PY + η(Y )ξ), PZ + η(Z)ξ)

−g1(PY + η(Y )ξ,∇X(PZ + η(Z)ξ))

= X.{g1(PY, PZ) + g1(PY, η(Z)ξ) + g1(η(Y )ξ, PZ) + g1(η(Y )ξ, η(Z)ξ}
−g1(∇X(PY ) +∇X(η(Y )ξ)), PZ + η(Z)ξ)− g1(PY + η(Y )ξ,∇X(PZ) +∇X(η(Z)ξ))

= X.{g(PY, PZ) + η(PY )η(Z) + η(Y )η(PZ) + η(Y )η(Z)} − g1(∇X(PY ), PZ)

−g1(∇X(η(Y )ξ), PZ)− g1(∇XPY, η(Z)ξ)− g1(∇X(η(Y )ξ), η(Z)ξ)

−g1(∇X(PZ), PY )− g1(∇X(η(Z)ξ), PY )− g1(∇XPZ, η(Y )ξ)− g1(∇X(η(Z)ξ), η(Y )ξ)

From Equation (3.1.2), η(PX) = g(N,PX) = 0 ∀X ∈ Γ(TM).

∇g1X (Y,Z) = X.{g(PY, PZ) + η(Y )η(Z)} − g1(∇X(PY ), PZ)− g1(∇X(η(Y )ξ), PZ)

−g1(∇XPY, η(Z)ξ)− g1(∇X(η(Y )ξ), η(Z)ξ)− g1(∇X(PZ), PY )

−g1(∇X(η(Z)ξ), PY )− g1(∇XPZ, η(Y )ξ)− g1(∇X(η(Z)ξ), η(Y )ξ) (4.1.3)

from Equation (3.1.17), ∀X ,Y ∈ Γ(TM) ∇XPY = ∇∗XPY + C(X,PY )ξ.

g1(∇XPY, PZ) = g1(∇∗XPY + C(X,PY )ξ, PZ)

= g1(∇∗XPY, PZ) + C(X,PY )g1(ξ, PZ)

= g1(∇∗XPY, PZ)

= g(∇∗XPY, PZ).

16
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g1(∇X(η(Y )ξ), PZ) = g1(X.η(Y )ξ + η(Y )∇Xξ, PZ)

= g1(X.η(Y )ξ, PZ) + g1(η(Y )∇Xξ, PZ)

= X.η(Y )g1(ξ, PZ) + η(Y )g1(∇Xξ, PZ)

= η(Y )g1(−τ(X)ξ −
?
Aξ(X), PZ)

= η(Y )g1(−
?
Aξ(X), PZ)

= η(Y )g(−
?
Aξ(X), PZ).

g1(∇XPY, η(Z)ξ) = g1(∇∗XPY + C(X,PY )ξ, η(Z)ξ)

= η(Z)g1(∇∗XPY, ξ) + η(Z)g1(C(X,PY )ξ, ξ)

= η(Z)C(X,PY ).

g1(∇X(η(Y )ξ), η(Z)ξ) = g1(X.η(Y )ξ + η(Y )∇Xξ), η(Z)ξ)

= X.η(Y )η(Z)g1(ξ, ξ) + η(Y )η(Z)g1(∇Xξ, ξ)

= X.η(Y )η(Z) + η(Y )η(Z)g1(−τ(X)ξ −
?
Aξ(X), ξ)

= X.η(Y )η(Z)− η(Y )η(Z)τ(X).

By summing everything in Equation (4.1.3), we obtain:

∇g1X (Y, Z) = X.{g(PY, PZ) + η(Y )η(Z)} − g(∇∗XPY, PZ)− η(Y )g(−
?
Aξ(X), PZ)

−η(Z)C(X,PY )−X · η(Y )η(Z) + η(Y )η(Z)τ(X)− g(∇∗XPZ, PY )

−η(Z)g(−
?
Aξ(X), PY )− η(Y )C(X,PZ)−X · η(Z)η(Y ) + η(Y )η(Z)τ(X)

= X · g(PY, PZ) +X · η(Y )η(Z) +X · η(Z)η(Y )− g(∇∗XPY, PZ)− η(Y )g(−
?
Aξ(X), PZ)

−η(Z)C(X,PY )−X · η(Y )η(Z) + η(Y )η(Z)τ(X)− g(∇∗XPZ, PY )

−η(Z)g(−
?
Aξ(X), PY )− η(Y )C(X,PZ)−X · η(Z)η(Y ) + η(Y )η(Z)τ(X)

= X · g(PY, PZ)− g(∇∗XPY, PZ) + η(Y )g(
?
Aξ(X), PZ)− η(Z)C(X,PY ) + η(Y )η(Z)τ(X)

−g(∇∗XPZ, PY ) + η(Z)g(
?
Aξ(X), PY )− η(Y )C(X,PZ) + η(Y )η(Z)τ(X)

= {X.g(PY, PZ)− g(∇∗XPY, PZ)− g(∇∗XPZ, PY )}+ η(Y )g(
?
Aξ(X), PZ)

−η(Z)C(X,PY ) + η(Z)g(
?
Aξ(X), PY )− η(Y )C(X,PZ) + 2η(Y )η(Z)τ(X)

We know that ∇∗ is g-metric, so we get:

∇g1X (Y,Z) = η(Y )g(
?
Aξ(X), PZ)− η(Z)C(X,PY ) + η(Z)g(

?
Aξ(X), PY )

−η(Y )C(X,PZ) + 2η(Y )η(Z)τ(X)

= η(Y )(g(
?
Aξ(X), PZ)− C(X,PZ)) + η(Z)(g(

?
Aξ(X), PY )− C(X,PY )) + 2η(Y )η(Z)τ(X)

We have from Proposition 3.1.13 that B(X,PY ) = g(
?
Aξ(X), PY ), so finally we get

∇g1X (Y, Z) = η(Y )(B(X,PZ)− C(X,PZ)) + η(Z)(B(X,PY )− C(X,PY ))

+2η(Y )η(Z)τ(X). (4.1.4)
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4.1.1 Theorem. ([2], page 3490)

∇g1X (Y,Z) = 0⇔ B(X,PZ) = C(X,PZ) and τ(X) = 0 ∀X,Y, Z ∈ Γ(TM) (4.1.5)

Proof. If B(X,PZ) = C(X,PZ) and τ(X) = 0 ∀ X,Y, Z ∈ Γ(TM), from Equation (4.1.4), it is
immediate that ∇g1X (Y,Z) = 0.

Now assume that we have ∇g1X (Y,Z) = 0 ∀X,Y, Z ∈ Γ(TM)

• setting Y = Z = ξ in (4.1.4), we have

0 = ∇g1X (ξ, ξ) = η(ξ)(B(X, 0)− C(X, 0)) + η(ξ)(B(X, 0)− C(X, 0))

+2η(ξ)η(ξ)τ(X)

0 = τ(X).

Then replacing Y to be ξ in (4.1.4), we have

0 = ∇g1X (ξ, Z) = η(ξ)(B(X,PZ)− C(X,PZ)) + η(Z)(B(X, 0)− C(X, 0))

0 = η(ξ)(B(X,PZ)− C(X,PZ))

B(X,PZ) = C(X,PZ).

And we have proved the theorem.

4.1.2 Remark. It may happen that the induced connection ∇ on M by ∇ is equal to the Levi-Civita
connection of M for a given rigging, but if we make a change of rigging we loose this equality.

Let us consider another rigging ζ ′ for M and we decompose it as

ζ ′ = θN + Z

where Z ∈ Γ(TM) and θ ∈ C∞(M) is a function which never vanishes.

4.1.3 Proposition. The corresponding rigged ξ′ and transverse vector field N ′ are given by:

ξ′ =
1

θ
ξ

N ′ = θN + V where V = Z − 1

2θ
g(ζ ′, ζ ′)ξ.

And we have the following relationships [1]:

B′(X,Y ) =
1

θ
B(X,Y ) (4.1.6)

τ ′(X) = τ(X) +
1

θ
dθ(X) +

1

θ
B(V,X) (4.1.7)

C ′(X,PY ) = θC(X,PY )− g(∇XV, PY ) + τ ′(X)g(V, PY )

∇′XY = ∇XY −
1

θ
B(X,Y )V.

4.1.4 Proposition. ([5], page 248)

Let ζ be a rigging for a totally geodesic null hypersurface such that dτ 6= 0. Then, the induced and the
rigged connections do not coincide for any election of the rigging.
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Proof.

• ∇N 6= ∇

If we assume that ∇N = ∇, then from Theorem 4.1.1, it follows that τ = 0. This implies that dτ = 0.

• Let ζ ′ be another selection of rigging. So we have from Equation (4.1.6) that 0 = B(X,PY ) =
1
θB
′(X,PY ). So Equation (4.1.7) implies that dτ ′ = dτ + d(1θ )dθ = dτ 6= 0.

Therefore we can conclude that the induced connection and the rigged connection (the Levi-Civita
connection of M) do not coincide for any choice of rigging.

Example of rigging for which there is coincidence.

4.1.5 Example. (Monge Null Hypersurfaces of R3
1, [4] page 11)

Let us consider R3
1 = (R3, g) where g = −dx2 + dy2 + dz2. Let D be an open subset of Riemannian

manifold R2
0 = (R2,du2 + dv2). Let f : D → R be a nowhere vanishing function and let us consider

the immersion:

i : D → R3
1

p = (u, v) 7→ (x = f(p), y = u, z = v)

M = i(D) is called a Monge hypersurface of R3
1.

∀p ∈ D, TpM = Im i′(u, v) = 〈U =

f ′u(p)
1
0

 ;V =

f ′v(p)0
1

〉.
Therefore X = Xx∂x + Xy∂y + Xz∂z ∈ TpM if Xx = Xuf ′u(p) + Xvf ′v(p). The vector field
N = ∂

∂x + f ′u(p) ∂∂y + f ′v(p)
∂
∂z is normal to TpM , indeed

g

(
∂

∂x
+ f ′u(p)

∂

∂y
+ f ′v(p)

∂

∂z
, f ′u(p)

∂

∂x
+

∂

∂y

)
= −f ′u(p) + f ′u(p) = 0

g

(
∂

∂x
+ f ′u(p)

∂

∂y
+ f ′v(p)

∂

∂z
, f ′v(p)

∂

∂x
+

∂

∂z

)
= −f ′v(p) + f ′v(p) = 0

4.1.6 Definition. M is called a Monge null hypersurface if N is a null vector field, ie

g(N ,N ) = 0

g

(
∂

∂x
+ f ′u(p)

∂

∂y
+ f ′v(p)

∂

∂z
,
∂

∂x
+ f ′u(p)

∂

∂y
+ f ′v(p)

∂

∂z

)
= 0

(f ′u(p))2 + (f ′v(p))
2 = 1. (4.1.8)

And in this case you can see that N = f ′u(p)U + f ′v(p)V ∈ TpM

If we take equation (4.1.8) and we derivate with respect to xβ (β = 0, 1, 2), we obtain

f ′u(p)f ′′xα,u(p) + f ′v(p)f
′′
xα,v(p) = 0. (4.1.9)

Now we consider M a Monge null hypersurface and we endow M with the rigging Nf = 1√
2
{− ∂

∂x +

f ′u
∂
∂y + f ′v

∂
∂z}. The vector field Nf is define on R∗ ×D but is null only along M . The corresponding
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rigged vector field is ξf = N√
2

= 1√
2
{ ∂∂x + f ′u

∂
∂y + f ′v

∂
∂z}, the vector field ξf is define on R∗ ×D but is

null only along M . Indeed

g(Nf , ξf ) =
1

2
g

(
− ∂

∂x
+ f ′u

∂

∂y
+ f ′v

∂

∂z
,
∂

∂x
+ f ′u

∂

∂y
+ f ′v

∂

∂z

)
=

1

2
(1 + (f ′u)2 + (f ′v)

2) = 1.

x = f(u, v), so
∂

∂u
= f ′u

∂

∂x
+

∂

∂y
and

∂

∂v
= f ′u

∂

∂x
+

∂

∂z
=⇒ TM = 〈 ∂

∂u
,
∂

∂v
〉

R3
1 is plate and we have

∇∂uξ =
1√
2
∇∂uN

=
1√
2
∇f ′u∂x+∂y{

∂

∂x
+ f ′u

∂

∂y
+ f ′v

∂

∂z
}

=
1√
2
∇∂y{

∂

∂x
+ f ′u

∂

∂y
+ f ′v

∂

∂z
}

=
1√
2

(f ′′y,u
∂

∂y
+ f ′′y,v

∂

∂z
)

=
1√
2

(f ′′y,u(
∂

∂u
− f ′u

∂

∂x
) + f ′′y,v(

∂

∂v
− f ′v

∂

∂x
))

=
1√
2

(f ′′y,u
∂

∂u
+ f ′′y,v

∂

∂v
) + x(f ′uf

′′
y,u + f ′vf

′′
y,v)

∂

∂x

=
1√
2

(f ′′y,u
∂

∂u
+ f ′′y,v

∂

∂v
).

We have

g(∇∂uN ,Nf ) =
1

2
g(f ′′y,u

∂

∂y
+ f ′′y,v

∂

∂z
,− ∂

∂x
+ f ′u

∂

∂y
+ f ′v

∂

∂z
)

=
1

2
g(f ′uf

′′
y,u + f ′vf

′′
y,v)

= 0 from Equation 4.1.9

=⇒ ∇∂uN ∈ S(TM).

Therefore since ∇∂uξ = −τ( ∂
∂u)ξ −

?
Aξ(

∂
∂u), we conclude that τ( ∂

∂u) = 0 and
?
Aξ(

∂
∂u) = − 1√

2
(f ′′y,u

∂
∂u +

f ′′y,v
∂
∂v ) and by the same computation, we will obtain: τ( ∂∂v ) = 0 and

?
Aξ(

∂
∂v ) = − 1√

2
(f ′′z,u

∂
∂u + f ′′z,v

∂
∂v ).

τ(
∂

∂u
) = τ(

∂

∂v
) = 0 =⇒ τ = 0. (4.1.10)
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On the other hand, we have

Nf − ξf = −
√

2
∂

∂x

=⇒ ∇∂u(Nf − ξf ) = −
√

2∇∂u(
∂

∂x
)

=⇒ ∇∂uNf −∇∂uξf = −
√

2∇f ′u∂x+∂y(
∂

∂x
) = 0

=⇒ ∇∂uNf = ∇∂uξf = −
?
Aξ(

∂

∂u
)

=⇒ AN (
∂

∂u
) =

?
Aξ(

∂

∂u
).

By the same computation, AN (
∂

∂v
) =

?
Aξ(

∂

∂v
).

Therefore:
?
Aξ = AN (conformal screen)

=⇒ g(
?
Aξ(X), Y ) = g(AN (X), Y ) ∀X,Y ∈ Γ(TM)

=⇒ C(X,PY ) = B(X,PY ) ∀X,Y ∈ Γ(TM) (4.1.11)

All the conditions of Theorem 4.1.1 are satisfied, so we conclude that the levi Civita connection of
(M, g1) and the induced connection on M coincide.

∇1 = ∇

Examples of Rigging for which this coincidence does not hold.

4.1.7 Example. The lightlike cone Λ2
0 of R3

1 ([3], page 80)

Let consider the space R3 endowed with the metric g = −dx2 + dy2 + dz2, R3
1 = (R3, g) is called the

Minkowski space of dimension 3.

Λ2
0 = {(x, y, z) ∈ R3; − x2 + y2 + z2 = 0}.

Let f be the submersion defined by,

f : R3 → R
(x, y, z) 7→ −x2 + y2 + z2

Λ2
0 = f−1({0})

Therefore, ∀p = (x, y, z) ∈ Λ2
0, the tangent space at (x, y, z) is

TpΛ
2
0 = ker f ′(x, y, z) = {(a, b, c) ∈ R3,−a

√
y2 + z2 + by + cz = 0}

This tangent space is spanned by Y = ∂
∂y + y√

y2+z2
∂
∂x and Z = ∂

∂z + z√
y2+z2

∂
∂x .

If we take ξ = yY + zZ =
√
y2 + z2 ∂

∂x + y ∂
∂y + z ∂

∂z ∈ TpΛ
2
0 we have:

g(ξ, Y ) = g

(√
y2 + z2

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,
∂

∂y
+

y√
y2 + z2

∂

∂x

)
= −y + y = 0
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And g(ξ, Z) = g

(√
y2 + z2

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,
∂

∂z
+

z√
y2 + z2

∂

∂x

)
= −z + z = 0

=⇒ ∀ T ∈ TpΛ2
0, g(ξ, T ) = 0

Therefore we have proved that Λ2
0 is a lightlike hypersurface of R3

1. Let us find the transversal vector
field N such that g(N,N) = 0 and g(ξ,N) = 1.

Take N =
1

2(y2 + z2)

{
−
√
y2 + z2

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

}
∀(x, y, z) ∈ Λ2

0

and g(N,N) =
1

4(y2 + z2)2
(−y2 − z2 + y2 + z2) = 0

g(ξ,N) =
1

2(y2 + z2)
(y2 + z2 + y2 + z2) = 1 and N /∈ TΛ2

0

It is obvious to see that the rigging is null only on the hypersurface and nowhere else, indeed

let p = (x, y, z) /∈ Λ2
0, Np =

1

2x2
{−x ∂

∂x
+ y

∂

∂y
+ z

∂

∂z
}

gp(Np, Np) =
1

4x4
g(−x ∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,−x ∂

∂x
+ y

∂

∂y
+ z

∂

∂z
)

=
1

4x4
(−x2 + y2 + z2) 6= 0

The screen distribution S(TΛ2
0) of TΛ2

0 is of dimension 1, and it is such that

∀ T ∈ S(TΛ2
0), g(T,N) = 0

Therefore we can take S(TΛ2
0) = 〈S〉 where S = zY − yZ ∈ TΛ2

0

And we see that g(S,N) =
1

2(y2 + z2)
g

(
z
∂

∂y
− y ∂

∂z
,−
√
y2 + z2

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
=

1

2(y2 + z2)
(yz − zy) = 0

it is obvious to see that all the Christoffel of the metric vanishes. Therefore,

∀T = gY + hZ ∈ TΛ2
0, ∇T ξ = ∇T (

√
y2 + z2

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
)

= T (x)
∂

∂x
+ T (y)

∂

∂y
+ T (z)

∂

∂z

= (g
y√

y2 + z2
+ h

y√
y2 + z2

)
∂

∂x
+ g

∂

∂y
+ h

∂

∂z

= gX + hY = T

∀T ∈ TΛ2
0, ∇T ξ = T =⇒ ∇ξξ = ξ /∈ S(TΛ2

0) =⇒ τ(ξ) 6= 0

We can conclude that there is no coincidence between the rigged connection and the induced connection
of the metric.



Section 4.1. Condition for Coincidence between the Induced and the Rigged Connections for α = 1Page 23

4.1.8 Example. Twisted Product ([5], page 249)

Consider (R2, 2dudv) and take (Q, gQ) any Riemannian manifold. Consider the twisted product (M, g) =

(Q×R2, gQ + 2f2(x, u, v)dudv), being f ∈ C∞(Q×R2) a positive function with w(fvf ) 6= 0 for some
w ∈ Tx0Q.

Let M = {(x, u, v) ∈ Q× R2 : u = u0} and we consider the submersion

f : Q× R2 → R
(x, u, v) 7→ u− u0

M = f−1({0}), hence ∀p = (x, u, v) ∈ M, df(p) = du, let X = Xx + Xu∂u + Xv∂v ∈ TpQ × R2,
X ∈ TpM iff du(X) = 0 =⇒ Xu = 0

X ∈ TpM iff X = Xx +Xv∂v.

The vector field N = 1
2f2

∂u is a null rigging for M , indeed we have du(N) = 1
2f2
6= 0, it follows that

N is not a section of TM and g(N,N) = gQ(N,N) = 0.

The corresponding rigged vector field is ξ = ∂v and the screen distribution is S ≈ TQ.

We can compute the Christoffel of g since g is a semi-Riemannian metric.

the metric g and its inverse g−1 are given by:

g =

gQ 0 0
0 0 2f2

0 2f2 0

 g−1 =

g
−1
Q 0 0

0 0 1
2f2

0 1
2f2

0


We know that

∇ξξ = ∇ξξ = −τ(ξ)ξ −
?
Aξ(ξ)

= −τ(ξ)ξ since
?
Aξ(ξ) = 0.

Therefore,

∇ξξ = ∇∂v∂v = Γkvv∂k = Γvvv∂v

Γvvv =
1

2
gvu{∂vguv + ∂vgvu − ∂ugvv}

=
1

4f2
{2∂vguv}

=
2fv
f
.

So we conclude that τ(ξ) = −2fv
f .

Let PX ∈ TQ, let {xi} be a local coordinate system of TQ and {∂i} be a basis of TQ.

We know that ∇PXξ = −τ(PX)ξ −
?
Aξ(PX).
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On the other hand,

PX = PXi∂xi

∇PXξ = ∇PXξ = PXi∇∂xi∂v
= PXiΓkiv∂k

= PXi(Γviv∂v + Γiiv∂i)

Γviv =
1

2
gvu{∂iguv + ∂vgiu − ∂ugiv}

=
1

4f2
{∂i(2f2)}

=
∂i(f)

f

Γiiv =
1

2
gij{∂igjv + ∂vgij − ∂jgiv}

= 0

Therefore , ∇PXξ = PXi∂i(f)

f
ξ =

PX(f)

f
ξ.

So, we conclude that
?
Aξ(PX) = 0 and τ(PX) = −PX(f)

f ∀X ∈ Γ(TM).

B(PX, Y ) = g(
?
Aξ(PX), Y ) = 0 and B(ξ, Y ) = 0 ∀X,Y ∈ Γ(TM)

B(X,Y ) = 0 ∀ X,Y ∈ Γ(TM) therefore M is totally geodesic.

On the other hand:

dτ(ξ, w) = ξ · τ(w)− w · τ(ξ)− τ([ξ, w])

= ξ · τ(w)− w · τ(ξ)

= −ξ ·
(
w(f)

f

)
+ 2w · (fv

f
)

= −w ·
(
ξ(f)

f

)
+ 2w · (fv

f
) = w · (fv

f
) 6= 0 because [ξ, w] = 0.

We have M totally geodesic and dτ 6= 0, using Proposition 4.1.4, we conclude that the induced
connection and the rigged connection do not coincide for any choice of the rigging.

4.2 Coincidence between the Induced and the Rigged Connections for
α 6= 1

In this chapter, we are interested in the general case where α 6= 0 is a function and N is a closed rigging
and we want to find conditions such that ∇α = ∇, where ∇ is the connection on M obtained through
the projection of ∇ along N and ∇α is the Levi-Civita connection of M with respect to the metric gα.
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4.2.1 Definition. The screen distribution S(TM) is said to be totally umbilical if there exists f ∈
C∞(M) such that C(X,PY ) = fg(X,Y ) ∀X,Y ∈ TM , If C = 0 then S(TM) is said to be totally
geodesic.

We say that the rigging N is conformal if there exists φ ∈ C∞(M), φ(x) 6= 0 ∀x ∈ M such that

AN = φ
?
Aξ. When dη = 0 we say that the rigging N is closed or that (M, g,N) is a closed rigged null

hypersurface.

4.2.2 Definition (α-associated metric). We define the α-associated metric of (M, g,N) by :

gα = g + αη ⊗ η. (4.2.1)

And we recall from Definition 3.1.4 that The vector field ξ over M is g1-metrically equivalent to η i.e (η =
g1(ξ, .).

4.2.3 Proposition. The α-associated metric gα is non-degenerate.

Proof. Let X ∈ Γ(TM) such that gα(X,Y ) = 0 ∀ Y ∈ Γ(TM);

In particular for ξ ∈ Rad(TM) ⊂ TM , 0 = gα(X, ξ) = g(X, ξ) + αη(X)η(ξ) = αη(X)η(ξ), it follows
that η(X) = 0, so X ∈ S(TM). Therefore, we will have gα(X,Y ) = g(X,Y ) = 0 ∀ Y ∈ Γ(TM),
thus X ∈ Rad(TM) ∩ S(TM). So X = 0, therefore gα is non degenerate.

We recall the Koszul Identity:

The Levi-Civita connection ∇α with respect to the metric gα of M satisfies:

2gα(∇αUV,W ) = U · gα(V,W ) + V · gα(U,W )−W · gα(U, V ) + gα([U, V ],W )

+gα([W,U ], V )− gα([V,W ], U) (4.2.2)

4.2.4 Proposition. When N is closed, we have

g(∇UN,V ) = g(U,∇VN) ∀U, V ∈ Γ(TM). (4.2.3)

Proof.

0 = dη(U, V ) = U · η(V )− V · η(U)− η([U, V ])

= U · g(N,V )− V · g(N,U)− η(∇UV −∇V U)

= g(∇UN,V ) + g(N,∇UV )− g(∇VN,U)− g(N,∇V U)− g(N,∇UV −∇V U)

= g(∇UN,V )− g(∇VN,U)

4.2.5 Lemma. [4, page 4] If (M, g,N) is a closed rigged null hypersurface with a conformal screen
distribution, then the 1-form τ vanishes on the screen distribution.

Proof. Using Proposition 4.2.4, and replacing U = ξ and V = PX, we have

g(∇ξN,PX) = g(ξ,∇PXN)

g(τ(ξ)N −AN (ξ), PX) = g(ξ, τ(PX)N −AN (PX))

−g(AN (ξ), PX) = τ(PX)

−φg(
?
Aξ(ξ), PX) = τ(PX)
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−φB(ξ, PX) = τ(PX)

τ(PX) = 0.

4.2.6 Proposition. [4, page 6](Relation between ∇α and ∇)

Let∇α be the Levi-Civita connection on TM with respect to the metric gα and∇ the induced connection
on M from ∇. Then both are linked by:

∇αXY = ∇XY −
1

2
η(X)η(Y )(dα)#gα +

α

2
[η(X)(iY dη)#gα + η(Y )(iXdη)#gα ]

+
1

2α
[αLNg(X,Y ) + 2B(X,Y ) + dα(X)η(Y ) + dα(Y )η(X)]ξ. (4.2.4)

Proof. Using Equation (4.2.2) and Equation (4.2.1),

2gα(∇αXY,Z) = X · gα(Y,Z) + Y · gα(X,Z)− Z · gα(X,Y ) + gα([X,Y ], Z)

+gα([Z,X], Y )− gα([Y,Z], X)

= X · [g(Y, Z) + αη(Y )η(Z)] + Y · [g(X,Z) + αη(X)ηZ)]− Z · [g(X,Y ) + αη(X)η(Y )]

+g([X,Y ], Z) + αη([X,Y ])η(Z) + g([Z,X], Y ) + αη([Z,X]η(Y )− g([Y, Z], X)

−αη([Y,Z])η(X)

= 2g(∇XY,Z) + dα(X)η(Y )η(Z) + αX · (η(Y ))η(Z) + αX · (η(Z)))η(Y ) + dα(Y )η(X)η(Z)

+αY · (η(X))η(Z) + αY · (η(Z))η(X)− dα(Z)η(X)η(Y )− αZ · (η(X))η(Y )

−αZ · (η(Y ))η(X) + αη([X,Y ])η(Z) + αη([Z,X])η(Y )− αη([Y, Z])η(X)

= 2g(∇XY,Z) + 2B(X,Y )η(Z) + dα(X)η(Y )η(Z) + dα(Y )η(X)η(Z) + αdη(Y,Z)η(X)

+αdη(X,Z)η(Y ) + α[X · (η(Y )) + Y · (η(X))]η(Z)− dα(Z)η(X)η(Y )

+αη(∇XY −∇YX)η(Z)

= 2gα(∇XY,Z)− 2αη(∇XY )η(Z) + 2B(X,Y )η(Z) + dα(X)η(Y )η(Z) + dα(Y )η(X)η(Z)

+αdη(Y,Z)η(X) + αdη(X,Z)η(Y ) + αLNg(X,Y )η(Z)− dα(Z)η(X)η(Y )

+2αη(∇XY )η(Z)

= 2gα(∇XY,Z) + 2B(X,Y )η(Z) + dα(X)η(Y )η(Z) + dα(Y )η(X)η(Z)

+αdη(Y,Z)η(X) + αdη(X,Z)η(Y ) + αLNg(X,Y )η(Z)− dα(Z)η(X)η(Y )

Now we use the fact that gα(X, ξ) = αη(X)

= 2gα(∇XY,Z) +
2

α
B(X,Y )gα(ξ, Z) +

1

α
gα(dα(X)η(Y )ξ + dα(Y )η(X)ξ + αLNg(X,Y )ξ, Z)

+αη(X)gα((iY dη)#gα , Z) + αη(Y )gα((iXdη)#gα , Z)− η(X)η(Y )gα(dα#gα , Z).

And we have the result.

4.2.7 Proposition. Since N is a closed rigging, then

LNg(X,Y ) = 2τ(X)η(Y )− 2C(X,PY ). (4.2.5)
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Proof.

LNg(X,Y ) = N · g(X,Y )− g([N,X], Y )− g(X, [N,Y ])

= g(∇NX,Y ) + g(X,∇NY )− g(∇NX −∇XN,Y )− g(X,∇NY −∇YN)

= g(∇XN,Y ) + g(X,∇YN) = 2g(∇XN,Y ) from Proposition 4.2.4

= 2g(τ(X)N −AN (X), Y )

= 2τ(X)η(Y )− 2C(X,PY ) from Proposition 3.1.17

Therefore, Equation (4.2.4) becomes

∇αXY = ∇XY −
1

2
η(X)η(Y )(dα)#gα (4.2.6)

+
1

2α
[2ατ(X)η(Y )− 2αC(X,PY ) + 2B(X,Y ) + dα(X)η(Y ) + dα(Y )η(X)]ξ

4.2.8 Theorem. [4, page 7] Let (M,g,N) be a closed rigged null hypersurface,

1. Let α such that dα(PX) = 0 ∀X ∈ Γ(TM) i.e α is constant on each leaf of the screen
distribution, then the induced connection ∇ = ∇α if and only if:

?
Aξ= αAN and 2ατ(ξ) + dα(ξ) = 0. (4.2.7)

2. Let α be a non null real number, then the induced connection ∇ = ∇α if and only if

?
Aξ= αAN and τ ≡ 0. (4.2.8)

Proof. 1.

X = PX + η(X)ξ

dα(X) = η(X)dα(ξ) =⇒ αdα = dα(ξ)gα(ξ, ·)
αdα#gα = dα(ξ)ξ.

Therefore Equation (4.2.6) becomes

∇αXY = ∇XY −
1

2α
η(X)η(Y )dα(ξ)ξ

+
1

2α
[2ατ(X)η(Y )− 2αC(X,PY ) + 2B(X,Y ) + η(X)η(Y )dα(ξ) + η(Y )η(X)dα(ξ)]ξ

= ∇XY +
1

2α
[2ατ(X)η(Y )− 2αC(X,PY ) + 2B(X,Y ) + η(X)η(Y )dα(ξ)]ξ

∇ = ∇α if and only if

2ατ(X)η(Y )− 2αC(X,PY ) + 2B(X,Y ) + η(X)η(Y )dα(ξ) = 0 ∀X,Y ∈ Γ(TM) (4.2.9)

especially for X = Y = ξ we obtain

2ατ(ξ) + dα(ξ) = 0
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now for Y = ξ we obtain

2ατ(X) + η(X)dα(ξ) = 0 ∀X ∈ Γ(TM).

Back to Equation (4.2.9), we have

−2αC(X,PY ) + 2B(X,Y ) = 0 ∀X,Y ∈ Γ(TM)

g(
?
Aξ(X), Y ) = αg(AN (X), Y ) ∀X,Y ∈ Γ(TM)

g(
?
Aξ(X)− αAN (X), Y ) ∀X,Y ∈ Γ(TM)

but we also have that g(
?
Aξ(X)− αAN (X), N) = 0

g(
?
Aξ(X)− αAN (X), U) = 0 ∀X ∈ Γ(TM), ∀U ∈ Γ(TM)

=⇒
?
Aξ(X) = αAN (X) ∀X ∈ Γ(TM).

Now suppose that we have
?
Aξ= αAN and 2ατ(ξ) + dα(ξ) = 0, using Lemma 4.2.5 we conclude

that τ(PX) = 0 ∀ X ∈ Γ(TM), therefore

2ατ(X)η(Y )− 2αC(X,PY ) + 2B(X,Y ) + η(X)η(Y )dα(ξ)

= 2ατ(X)η(Y ) + η(X)η(Y )dα(ξ)

= η(Y )(2ατ(X) + η(X)dα(ξ))

= η(Y )(2ατ(PX) + 2αη(X)τ(ξ) + η(X)dα(ξ))

= η(Y )η(X)(2ατ(ξ) + dα(ξ))

= 0.

So Equation (4.2.9) holds.

2. α is a non zero real number, using part 1 of the theorem, we have

∇α = ∇ iff
?
Aξ= αAN and 2ατ(ξ) + dα(ξ) = 0

iff
?
Aξ= αAN and τ(ξ) = 0

using Lemma 4.2.5 τ(PX) = 0 ∀ X ∈ Γ(TM)

therefore, ∇α = ∇ iff
?
Aξ= αAN and τ(X) = 0 ∀ X ∈ Γ(TM).

.

4.2.9 Proposition. Let (M,g,N) be a rigged null hypersurface. If α is constant on each leaf of the
screen distribution such that it satisfies Theorem 4.2.8, then Theorem 4.2.8 holds for any change of
rigging Ñ = ψN , with ψ a non vanishing function and for α̃ = α

ψ2 .

Proof. Let us first remark that

∇̃XY = ∇XY ∀ X,Y ∈ Γ(TM)

and gα̃ = gα
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∇α̃ is the Levi-Civita connection of gα̃ and ∇α is the Levi-Civita connection of gα, so ∇α̃ = ∇α = ∇N .
Therefore ∇α̃ = ∇Ñ if and only if and only if ∇Ñ = ∇N which is already the case. So we have proved
that

∇α̃ = ∇Ñ .

This proposition means that if the couple (N,α) ensures the coincidence between the rigged and the
induced connections then for any non vanishing function ψ, the couple (ψN, α

ψ2 ) also ensures the

coincidence. And by induction all the couples (ψpN, α
ψ2p ), p ∈ N.

In the particular case of α = 1, if the rigged connection of g1 coincides with the induced connection, so
does the rigged connection of any gt, t ∈ R∗+.

4.2.10 Remark. For some situations, we can have a couple (Ñ , α̃) where α̃ is a function which is not
constant along the screen distribution and Ñ a non-closed rigging and we still have the coincidence
between the induced and the rigged connections.

4.2.11 Example. (Monge Null Hypersurfaces of R3
1, [4] page 14)

Let us consider M the Monge null hypersurface of Example 4.1.5 and we endow M with the rigging
Nf = 1

2x{
∂
∂x − f

′
u
∂
∂y − f

′
v
∂
∂z}. The vector field Nf is defined on R∗×D but is null only along M . The

corresponding rigged vector field is ξf = −xN = x{− ∂
∂x − f

′
u
∂
∂y − f

′
v
∂
∂z}, the vector field ξf is define

on R∗ ×D but is null only along M . Indeed

g(Nf , ξf ) =
1

2
g

(
∂

∂x
− f ′u

∂

∂y
− f ′v

∂

∂z
,− ∂

∂x
− f ′u

∂

∂y
− f ′v

∂

∂z

)
=

1

2
(1 + (f ′u)2 + (f ′v)

2) = 1.

x = f(u, v), so
∂

∂u
= f ′u

∂

∂x
+

∂

∂y
and

∂

∂v
= f ′u

∂

∂x
+

∂

∂z
=⇒ TM = 〈 ∂

∂u
,
∂

∂v
〉

R3
1 is plate and we have:

∇∂uξ = −∇∂uxN
= −∂u(x)N − x∇∂uN

=
f ′u
x
ξ − x∇f ′u∂x+∂y{

∂

∂x
+ f ′u

∂

∂y
+ f ′v

∂

∂z
}

=
f ′u
x
ξ − x∇∂y{

∂

∂x
+ f ′u

∂

∂y
+ f ′v

∂

∂z
}

=
f ′u
x
ξ − x(f ′′y,u

∂

∂y
+ f ′′y,v

∂

∂z
)

=
f ′u
x
ξ − x(f ′′y,u(

∂

∂u
− f ′u

∂

∂x
) + f ′′y,v(

∂

∂v
− f ′v

∂

∂x
))

=
f ′u
x
ξ − x(f ′′y,u

∂

∂u
+ f ′′y,v

∂

∂v
) + x(f ′uf

′′
y,u + f ′vf

′′
y,v)

∂

∂x

=
f ′u
x
ξ − x(f ′′y,u

∂

∂u
+ f ′′y,v

∂

∂v
).
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We have

g(∇∂uN ,Nf ) = −1

2
g(f ′′y,u

∂

∂y
+ f ′′y,v

∂

∂z
,
∂

∂x
− f ′u

∂

∂y
− f ′v

∂

∂z
)

=
1

2
g(f ′uf

′′
y,u + f ′vf

′′
y,v)

= 0 from Equation (4.1.9)

=⇒ ∇∂uN ∈ S(TM).

Therefore since ∇∂uξ = −τ( ∂
∂u)ξ −

?
Aξ(

∂
∂u), we conclude that τ( ∂

∂u) = −f ′u
x and

?
Aξ(

∂
∂u) = x(f ′′y,u

∂
∂u +

f ′′y,v
∂
∂v ) and by the same computation, we will obtain: τ( ∂∂v ) = −f ′v

x and
?
Aξ(

∂
∂v ) = x(f ′′z,u

∂
∂u + f ′′z,v

∂
∂v ).

On the other hand:

∇∂uNf = ∇∂u
1

2x
{ ∂
∂x
− f ′u

∂

∂y
− f ′v

∂

∂z
}

= ∂u(
1

2x
)(2xNf ) +

1

2x
∇∂u{

∂

∂x
− f ′u

∂

∂y
− f ′v

∂

∂z
}

= −f
′
u

x
Nf +

1

2x
∇f ′u∂x+∂y{

∂

∂x
− f ′u

∂

∂y
− f ′v

∂

∂z
}

= −f
′
u

x
Nf +

1

2x
∇∂y{

∂

∂x
− f ′u

∂

∂y
− f ′v

∂

∂z
}

= −f
′
u

x
Nf −

1

2x
(f ′′y,u

∂

∂y
+ f ′′y,v

∂

∂z
)

∇∂uNf = −f
′
u

x
Nf −

1

2x
(f ′′y,u

∂

∂u
+ f ′′y,v

∂

∂v
).

We conclude that AN (
∂

∂u
) =

1

2x2
?
Aξ(

∂

∂u
) =

1

2x
(f ′′y,u

∂

∂u
+ f ′′y,v

∂

∂v
)

and AN (
∂

∂v
) =

1

2x2
?
Aξ(

∂

∂v
) =

1

2x
(f ′′z,u

∂

∂u
+ f ′′z,v

∂

∂v
)

therefore:
?
Aξ= 2x2AN (conformal screen). (4.2.10)

η = g(Nf , ·)

=
1

2x
g(
∂

∂x
− f ′u

∂

∂y
− f ′v

∂

∂z
, ·)

= − 1

2x
(dx+ f ′udy + f ′vdz)

= − 1

2x
(f ′udu+ f ′vdv + f ′udu+ f ′vdv) since dx = f ′udu+ f ′vdv

= −1

x
(f ′udu+ f ′vdv)
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η( ∂
∂u) = τ( ∂

∂u) = −f ′u
x and η( ∂∂v ) = τ( ∂∂v ) = −f ′v

x =⇒ τ = η.

η = −1

x
(f ′udu+ f ′vdv)

dη = d(−1

x
f ′u) ∧ du+ d(−1

x
f ′v) ∧ dv

= (d(−1

x
)f ′u −

1

x
df ′u) ∧ du+ (d(−1

x
)f ′v −

1

x
df ′v) ∧ dv

=
f ′vf
′
u

x2
dv ∧ du− 1

x
f ′′v,udv ∧ du+

f ′vf
′
u

x2
du ∧ dv − 1

x
f ′′v,udu ∧ dv

= (
f ′vf
′
u

x2
− 1

x
f ′′v,u)(dv ∧ du+ du ∧ dv)

= 0.

We take α = 2x2 and we have

2ατ(ξ) + dα(ξ) = 2α+ d(2x2)(ξ)

= 2α+ 4xd(x)(−x{ ∂
∂x

+ f ′u
∂

∂y
+ f ′v

∂

∂z
})

= 2α− 4x2 = 0.

Now we need to check if α is constant on each leaf of the screen distribution. We have shown that
∇∂uN ∈ S(TM) since dim S(TM) = 1 =⇒ S(TM) = 〈∇∂uN〉 = 〈f ′′y,u ∂

∂u + f ′′y,v
∂
∂v 〉.

dα(f ′′y,u
∂

∂u
+ f ′′y,v

∂

∂v
) = 4xdx(f ′′y,u

∂

∂u
+ f ′′y,v

∂

∂v
)

= 4x(f ′udu+ f ′vdv)(f ′′y,u
∂

∂u
+ f ′′y,v

∂

∂v
)

= 4x
(
f ′uf

′′
y,u + f ′vf

′′
y,v

)
= 0 from Equation (4.1.9)

so α is constant on each leaf of the screen distribution.

All the conditions of Theorem 4.2.8 are satisfied, so we conclude that the Levi-Civita connection of
(M, gα) and the induced connection on M coincide.

∇α = ∇ with α = 2x2.

Example for which there is no coincidence between ∇α and ∇.

4.2.12 Example. (Lightlike cone of R3
1)

Let us consider the lighlike cone of Example 4.1.7, and we endow it with the UCC-normalization rigging
N = 1√

2
{− ∂

∂x + y
x
∂
∂y + z

x
∂
∂z} and with the corresponding rigged vector field ξ = 1√

2
{ ∂∂x + y

x
∂
∂y + z

x
∂
∂z}.

The tangent space is spanned by Y = ∂
∂y + y

x
∂
∂x and Z = ∂

∂z + z
x
∂
∂x .
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∇Y ξ = ∇Y
1√
2
{ ∂
∂x

+
y

x

∂

∂y
+
z

x

∂

∂z
}

=
1√
2
∇Y {

∂

∂x
+
y

x

∂

∂y
+
z

x

∂

∂z
}

=
1√
2

[
y

x
(− y

x2
∂

∂y
− z

x2
∂

∂z
) +

1

x

∂

∂y

]
=

1√
2x

[
(1− y2

x2
)
∂

∂y
− yz

x2
∂

∂z

]
.

We have

g((1− y2

x2
)
∂

∂y
− yz

x2
∂

∂z
,N) =

1√
2
g

(
(1− y2

x2
)
∂

∂y
− yz

x2
∂

∂z
,− ∂

∂x
+
y

x

∂

∂y
+
z

x

∂

∂z

)
=

1√
2

(
y

x
(1− y2

x2
)− y

x

z2

x2

)
=

y

x
√

2
(1− y2 + z2

x2
)

= 0 =⇒ (1− y2

x2
)
∂

∂y
− yz

x2
∂

∂z
∈ S(TM).

Therefore, since∇Y ξ = −τ(Y )ξ−
?
Aξ(Y ), we conclude that τ(Y ) = 0 and

?
Aξ(Y ) = − 1

x
√
2

[
(1− y2

x2
) ∂∂y −

yz
x2

∂
∂z

]
and by the same computation, we will obtain: τ(Z) = 0 and

?
Aξ(Z) = − 1

x
√
2

[
(1− z2

x2
) ∂∂z −

yz
x2

∂
∂y

]
.

On the other hand:

∇YN = ∇Y
1√
2
{− ∂

∂x
+
y

x

∂

∂y
+
z

x

∂

∂z
}

=
1√
2x

[
(1− y2

x2
)
∂

∂y
− yz

x2
∂

∂z

]
.

This implies that AN (Y ) =
?
Aξ(Y ) and by the same AN (Z) =

?
Aξ(Z), so AN =

?
Aξ

N is a closed rigging and For α = x which is constant along the leaf of the screen distribution, one

has
?
Aξ 6= αAN , so the Levi-Civita connection of (M, gα) and the induced connection on M along the

rigging N do not coincide.
∇α 6= ∇, for α = x. (4.2.11)

We have used the following SageMath code to compute explicitly the connection coefficients and
confirm the theoretical result obtained above.
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5. Conclusion

In this work, we used notions of screen distribution, rigging and rigged vector field to study the ge-
ometry of lightlike hypersurfaces. We recalled the Gauss and Weingarten formulas in the case of
semi-Riemannian and lightlike hypersurfaces and gave the Gauss-Codazzi equations for both cases. In
our main work, we stated and proved the sufficient and necessary conditions for the coincidence in the
case α = 1 [see [2]]. Later on, we stated and proved the necessary conditions for coincidence in the case
where α is a non vanishing function [see [4]]. Furthermore, we proved that if the lightlike hypersurface
is totally geodesic and the rotation function τ is such that dτ 6= 0 then the induced and the rigged
connections never coincide for any change of rigging and later we proved that if (N,α) is a solution
for the coincidence, then (ψN, α

ψ2 ) does not change the associated metric hence is also a solution for
coincidence and the latter allowed us to remark that we can have coincidence even when the rigging
vector field is not close or when the function α is not constant along leaves of the screen distribution.

For further researches, we will be considering the case where gα is a Riemannian metric induced on a
null hypersurface and observe which relation is between the induced geometric objects on M by the
ambient and the geometric objects of the couple (M, gα).
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