
Automatic Computation of Formal Power Series

SIMO Tao Lee Walter Cedric (cedric.lee@aims-cameroon.org)
African Institute for Mathematical Sciences (AIMS)

Cameroon

Supervised by: Prof. Dr. Wolfram Koepf

Universität Kassel, Germany

June 22, 2016

Submitted in Partial Fulfillment of a Structured Masters Degree at AIMS-Cameroon

Abstract

In this essay, we are implementing in the Computer Algebra System (CAS) Maxima the algorithm for
computing formal power series (FPS) of a wide family of functions published in 1992 by Wolfram Koepf
[3]. Indeed in the CAS Maxima, the computation of FPS has been rather pattern-based than algorithmic.
The algorithm we are implementing in the CAS Maxima has already been implemented by W. Koepf
and A. Rennoch in the CAS Mathematica, and by D. Gruntz and T. Sprenger in Maple.

Declaration

I, the undersigned, hereby declare that the work contained in this essay is my original work, and that
any work done by others or by myself previously has been acknowledged and referenced accordingly.

SIMO TAO LEE Walter Cedric, June 22, 2016.

i

Contents

Abstract i

1 Introduction 1

2 Holonomic Differential Equation 2

2.1 Illustration and Examples . 2

2.2 General Procedure and Implementation in Maxima . 5

2.3 Some Applications . 8

3 Conversion of a Holonomic Differential Equation to a Recurrence Equation 10

3.1 Illustrative Examples . 10

3.2 General Procedure of Conversion and Implementation 13

3.3 Some Applications . 16

4 Resolution of Recurrence Equations of Hypergeometric Type 17

4.1 Illustrative Examples . 17

4.2 General Procedure of Resolution of IV-REs of Hypergeometric Type 20

4.3 Some Applications . 21

5 Formal Power Series of Rational Functions 22

5.1 Illustrative Examples . 22

5.2 General Procedure for Computing Formal Power Series of Rational Functions 25

5.3 Some Applications . 26

6 The Formal Power Series Algorithm 27

6.1 General Procedure for Computing Formal Power Series 27

6.2 Some Applications . 29

6.3 General Remarks about our Package . 32

7 Conclusion and Perspectives 34

Acknowledgements 35

References 36

ii

1. Introduction

The expansion exp(x) =
∑∞

n=0
xn

n! is well known in mathematics and is called the formal power series of
the function exp(x). More generally, in mathematics, formal power series (FPS) which can be defined as
an abstraction of the notion of a polynomial, where the number of terms can be infinite, are well known
and play a major role in calculus, complex analysis and algebra. Given a function f , it is quite easy
to compute its truncated power series and thus this computation is available in each computer algebra
system. However the automatic computation of formal power series, i.e. finding a closed formula of the
main coefficient an in

f(x) =

∞
∑

n=0

anx
n,

is rather more difficult and is not so far implemented in all Computer Algebra Systems (CASs). In some
CAS like Maxima (see Maxima Manual [2]), the computation of FPS relies on a pattern matching based
approach whereas in some other CASs like Mathematica (see [6]) and Maple (see Maple Reference
Manual [1]), this computation is automatic and based on an algorithmic approach. As illustration,
assume we are given the function f(x) = sin(x) exp(x) and we wish to have the formal power series
of f(x) at the point x0 = 0. In Maple, the command convert(sin(x)*exp(x),FPS) does the
computation and gives

∞
∑

k=0

2k/2 sin(kπ4)xk

k!
,

whereas in Maxima, the command powerseries(sin(x)*exp(x),x,0) rather gives

(

∞
∑

i1=0

xi1

i1!

)

∞
∑

i1=0

(−1)i1x2i1+1

(2i1 + 1)!
,

which is no longer a formal power series. The second result obtained with Maxima clearly illustrates
the pattern matching based approach used in Maxima for computing FPS contrary to the algorithmic
approach implemented in Maple and Mathematica.

In [3] on which we are mainly focused, there are 2 algorithms: one for computing FPS of hypergeometric
type functions ([3, Section 3, page 589]) and the other one for computing FPS of rational functions
([3, Section 4, page 593]). In this work, based on those algorithms, we build up a package which will
enable automatic computation of formal power series in Maxima like in Maple and Mathematica.

Our work will be organised in five sections. The first three sections are about the implementation of the
main algorithm for computing FPSs of hypergeometric type functions. The first section is the starting
step in the algorithm which is getting the holonomic differential equation, that is the linear homogeneous
differential equation with polynomial coefficients, satisfied by a given function f . The second section
is devoted to the conversion of a holonomic differential equation (HDE) to a holonomic recurrence
equation (HRE). The third section presents the resolution of recurrence equations of hypergeometric
type. Afterwards comes Section 4 where the main point is the implementation of the rational algorithm
in order to compute formal power series of rational functions. And finally we end up in section 5 with
the combination of all the results of the previous sections to build up a function to compute the FPS
of any holonomic or rational function. Also in this step, we are going to present interesting results we
got.

1

2. Holonomic Differential Equation

In the process of getting the FPS of a given function f , the very first step is the computation of a holo-
nomic differential equation (HDE), that is a linear homogeneous differential equation with polynomial
coefficients, satisfied by that function f . In this chapter, using some examples, we are going to illustrate
how the HDE is computed. Afterwards, we will present the general procedure with its implementation
in the CAS Maxima, and finally we will apply this procedure to compute the HDEs of some functions
using the function Holonomic DE() from our package.

2.1 Illustration and Examples

In this part, we are going to illustrate the process of getting the HDE of a given function f by taking
some functions and computing their HDE (starting from simple cases to more difficult ones). By the
way, let us recall that the simplest case is when the function f is constant. Indeed when the function
f is constant, the first derivative is 0 and then the HDE is

y′ = 0, y(0) = f(0).

Now let us consider examples where the function f is not constant.

2.1.1 Example. Let the function f be defined by f(x) = exp(x2 + 1). Let us assume that f satisfies
an HDE of order 1, that means there exist 2 polynomials P0(x) and P1(x) such that P1(x) is not the
zero polynomial and

P1(x)f
′(x) + P0(x)f(x) = 0. (2.1.1)

Since P1 is not the zero polynomial, we can define the rational function Q0(x) = P0(x)
P1(x)

and then

Equation (2.1.1) becomes
f ′(x) +Q0(x)f(x) = 0. (2.1.2)

This equation leads to

Q0(x) = −
f ′(x)

f(x)
. (2.1.3)

Since f ′(x) = 2x exp(x2 + 1), we deduce that Q0(x) = −2x exp(x2+1)
exp(x2+1)

= −2x. From that, we can

consider P0(x) = −2x and P1(x) = 1, and have the HDE with initial values (IV-HDE) of order 1
satisfied by f as

y′ − 2x y = 0, y(0) = f(0) = e. (2.1.4)

2.1.2 Example. Let us consider the function f(x) = exp(x2 + 1) sin(x). We start by assuming that
the function f satisfies an HDE of order 1. From Equations (2.1.2) and (2.1.3), we deduce the existence

of a rational function Q0(x) such that Q0(x) = −f ′(x)
f(x) . But f

′(x) = 2x exp(x2 + 1) sin(x) + exp(x2 +

1) cos(x), which implies that

f ′(x)

f(x)
=

2x exp(x2 + 1) sin(x) + exp(x2 + 1) cos(x)

exp(x2 + 1) sin(x)
= 2x+ tan(x)−1,

which is clearly not a rational function. Thus we deduce that f does not satisfy an HDE of order 1.
Then we continue by assuming now that f satisfies an HDE of order 2. That means there exist 3
polynomials P0(x), P1(x) and P2(x) such that P2(x) is not the zero polynomial and

P2(x)f
′′(x) + P1(x)f

′(x) + P0(x)f(x) = 0. (2.1.5)

2

Section 2.1. Illustration and Examples Page 3

And since P2(x) is not the zero polynomial, we can define 2 rational functions Q0(x) and Q1(x) by

Q0(x) =
P0(x)

P2(x)
and Q1(x) =

P1(x)

P2(x)
, (2.1.6)

and Equation (2.1.5) becomes

f ′′(x) +Q1(x)f
′(x) +Q0(x)f(x) = 0. (2.1.7)

But

f ′′(x) = exp(x2 + 1)
(

2 sin(x) + 4x2 sin(x) + 2x cos(x) + 2x cos(x)− sin(x)
)

= exp(x2 + 1)
(

(4x2 + 1) sin(x) + 4x cos(x)
)

.

So after dividing by the common factor exp(x2 + 1), Equation (2.1.7) can be written as:

(4x2 + 1) sin(x) + 4x cos(x) + (2x sin(x) + cos(x))Q1(x) + sin(x)Q0(x) = 0, (2.1.8)

or equivalently

(

4x2 + 1 + 2xQ1(x) +Q0(x)
)

sin(x) + (Q1(x) + 4x) cos(x) = 0. (2.1.9)

But since the functions cos(x) and sin(x) are linearly independent, Equation (2.1.9) leads to the following
system of 2 equations with 2 unknown functions Q0(x) and Q1(x)

{

4x2 + 1 + 2xQ1(x) +Q0(x) = 0

Q1(x) + 4x = 0.
(2.1.10)

The solution of this system is

Q0(x) = 4x2 − 1 and Q1(x) = −4x.

From that, since Q0(x) =
P0(x)
P2(x)

and Q1(x) =
P1(x)
P2(x)

, we can consider

P0(x) = 4x2 − 1, P1(x) = −4x and P2(x) = 1.

Taking also into consideration that f(0) = 0 and f ′(0) = e, we end up with the following IV-HDE of
order 2

y′′ − 4xy′ + (4x2 − 1)y = 0, y(0) = 0, y′(0) = e. (2.1.11)

2.1.3 Example. Let us consider the function f(x) = sin2(x). As in the first 2 examples above we start
by assuming the function f satisfies an HDE of order 1 and from what we did above, that implies that
there exists a rational function Q0(x) satisfying Equation (2.1.3) i.e.

Q0(x) = −
f ′(x)

f(x)
.

But f ′(x) = 2 cos(x) sin(x), what implies that f ′(x)
f(x) = 2 cos(x)

sin(x) = 2 tan(x)−1 which is clearly a contra-

diction since tan(x)−1 is not a rational function. Thus we deduce that f does not satisfy an HDE of
order 1. Then we continue by assuming now that f satisfies an HDE of order 2. That means there exist
2 rational functions Q0(x) and Q1(x) such that

f ′′(x) +Q1(x)f
′(x) +Q0(x)f = 0. (2.1.12)

Section 2.1. Illustration and Examples Page 4

But f ′′(x) = −2 sin2(x) + 2 cos2(x) = 2(1− 2 sin2(x)), so Equation (2.1.12) can be written as

2(1− 2 sin2(x)) + 2 cos(x) sin(x)Q1(x) + sin2(x)Q0(x) = 0. (2.1.13)

Equation (2.1.13) implies that

2 cos(x) sin(x)Q1(x) + sin2(x)(Q0(x)− 4) = −2,
which clearly does not have a rational solution since the left hand side is not a constant function
contrary to the right hand side. From that we deduce that the function f does not satisfy an HDE of
order 2. Now we assume that f satisfies an HDE of order 3. That means there exist 4 polynomials
P0(x), P1(x), P2(x) and P3(x) such that P3(x) is not the zero polynomial and

P3(x)f
′′′ + P2(x)f

′′ + P1(x)f
′ + P0(x)f = 0. (2.1.14)

Since P3(x) is not the zero polynomial, we can define 3 rational functions Q0(x), Q1(x) and Q2(x) by

Q0(x) =
P0(x)

P3(x)
, Q1(x) =

P1(x)

P3(x)
and Q2(x) =

P2(x)

P3(x)
(2.1.15)

such that Equation (2.1.14) becomes

f ′′′ +Q2(x)f
′′ +Q1(x)f

′ +Q0(x)f = 0. (2.1.16)

But f ′′′(x) = −8 cos(x) sin(x), hence Equation (2.1.16) can be written as

− 8 cos(x) sin(x) + 2(1− 2 sin2(x))Q2(x) + 2 cos(x) sin(x)Q1(x) + sin2(x)Q0(x) = 0. (2.1.17)

Now we expand completely the expression and gather similar terms, that is linearly dependent terms
over the field Q(x) of rational functions. For instance the terms −4 sin2(x)Q2(x) and sin2(x)Q0(x) are

similar since their quotient −4 sin2(x)Q2(x)

sin2(x)Q0(x)
= −4Q2(x)

Q0(x)
is a rational function. After applying this gathering

to Equation (2.1.17), we get the following equation

(2Q1(x)− 8) cos(x) sin(x) + (Q0(x)− 4Q2(x)) sin
2(x) + 2Q2(x) = 0. (2.1.18)

And since the functions cos(x) sin(x), sin2(x) and the identity function 1 are linearly independent, Equa-
tion (2.1.18) brings us to the following system of 3 equations with 3 unknown functions Q0(x), Q1(x)
and Q2(x)











2Q1(x)− 8 = 0

Q0(x)− 4Q2(x) = 0

Q2(x) = 0.

(2.1.19)

The solution of this system is

Q0(x) = 0, Q1(x) = 4 and Q2(x) = 0. (2.1.20)

From those rational functions Q0(x), Q1(x) and Q2(x), we can define P0(x), P1(x), P2(x) and P3(x)
as follows:

P0(x) = 0, P1(x) = 4, P2(x) = 0 and P3(x) = 1. (2.1.21)

Furthermore, since f(0) = 0, f ′(0) = 0, f ′′(0) = 2, we can then deduce that sin2(x) satisfies the HDE
of order 3

y′′′ + 4y′ = 0, y(0) = 0, y′(0) = 0, y′′(0) = 2. (2.1.22)

From the above examples, one can actually have a good picture of the procedure of computing an HDE
of a given holonomic function. Thus we can now move to the general procedure and its implementation
in the CAS Maxima.

Section 2.2. General Procedure and Implementation in Maxima Page 5

2.2 General Procedure and Implementation in Maxima

Following the examples given in Section 2.1, let us present the general procedure to compute an HDE
of a given holonomic function. Before going to the procedure, let us remind that if the given function
f is not holonomic, then following the process used in the examples in Section 2.1, we will never stop.
This is why at the beginning, we first of all need to fix a maximal order of the HDE we are searching.
In our procedure we consider MAX ORDER DERIVATIVE to be that maximal order.
Furthermore before getting into the algorithm, let us remark that if f satisfies an HDE of order k, then
finding k + 1 polynomials Pj(x), j ∈ {0, ..., k} such that

Pk(x)f
(k)(x) + Pk−1(x)f

(k−1)(x) + · · ·+ P1(x)f
(1)(x) + P0(x)f(x) = 0 (2.2.1)

is equivalent to finding k rational functions Qj(x), j ∈ {0, ..., k − 1} such that

f (k)(x) +Qk−1(x)f
(k−1)(x) + · · ·+Q1(x)f

(1)(x) +Q0(x)f(x) = 0. (2.2.2)

Indeed, if we have k+1 polynomials Pj(x), j ∈ {0, ..., k} satisfying (2.2.1) then since Pk(x) is not the
zero polynomial (because the order of the HDE is k), dividing Equation (2.2.1) by Pk(x) and defining

Qj(x) =
Pj(x)

Pk(x)
, j ∈ {0, ..., k − 1}

we have k rational functions Qj(x), j ∈ {0, ..., k − 1} satisfying (2.2.2).

Conversely let us assume that we have k rational functions Qj(x), j ∈ {0, ..., k− 1} satisfying (2.2.2).
Defining the polynomial D(x) = lcm(denominator(Q0(x)), ..., denominator(Qk−1(x))) and multiply-
ing Equation (2.2.2) by D(x), we have

D(x)f (k)(x) +D(x)Qk−1(x)f
(k−1)(x) + · · ·+D(x)Q1(x)f

(1)(x) +D(x)Q0(x)f(x) = 0. (2.2.3)

By the way, let us remark that D(x)Qj(x), j ∈ {0, ..., k− 1} are now polynomial functions since D(x)
by definition is a polynomial multiple of Denominator(Qj(x)) for all j ∈ {0, ..., k − 1}. Dividing
Equation (2.2.3) by

W (x) = gcd (D(x), D(x)Qk−1(x), ..., D(x)Q1(x), D(x)Q0(x)) ,

and taking Pj(x) =
D(x)Qj(x)

W (x) , j ∈ {0, ..., k− 1} and Pk(x) =
D(x)
W (x) , we end up with k+1 polynomials

Pj(x), j ∈ {0, ..., k} satisfying Equation (2.2.1).

Having clarified the latter point, let us move now to the general algorithm for the computation of an
HDE of a given function f .

Algorithm for computing a holonomic differential equation of a given function f

1. We fix the upper bound of the order of the HDE we are looking for (in our case we fix it to
MAX ORDER DERIVATIVE).

2. If f ′(x) = 0 then the HDE is y′ = 0, y(0) = f(0) and we stop.

3. Otherwise we set a variable k to 1.

4. We compute f (k)(x), the k-th derivative of f(x).

Section 2.2. General Procedure and Implementation in Maxima Page 6

5. We write Equation f (k)(x) +
∑k−1

j=0 f
(j)(x)Qj(x) = 0.

6. We rewrite this equation in the form of a system of nk equations with k unknown rational functions
Qj(x), j ∈ {0, ..., k − 1} after identification of similar terms, nk ∈ N.

7. We solve this system to find Qj(x), j ∈ {0, ..., k − 1}.

8. If the system does not have a solution and k < MAX ORDER DERIVATIVE, we increment k by 1
(i.e. k := k + 1) and we go to step 4.

9. If the system does not have a solution and k =MAX ORDER DERIVATIVE, we either reset
MAX ORDER DERIVATIVE to a higher value and go to step 4 or exit with the message ”No HDE
satisfied by f of order less than or equal to MAX ORDER DERIVATIVE”.

10. Otherwise if we found a solution Qj(x), j ∈ {0, ..., k − 1}, we set D(x) to be the least common
multiple of denominators of the rational functions Qj(x), j ∈ {0, ..., k − 1} i.e.

D(x) := lcm(denominator(Q0(x)), ..., denominator(Qk−1(x))).

Afterwards we set k+ 1 polynomials Lj(x) = D(x)Qj(x), j ∈ {0, ..., k− 1} and Lk(x) := D(x)
and finally we define

Pj(x) =
Lj(x)

gcd (L0(x), ..., Lk(x))

in order to eliminate all the common factors. This leads to the simplest possible form of HDE
satisfied by f as

Pk(x)y
(k) +

k−1
∑

j=0

Pj(x)y
(j) = 0, y(j)(0) = f (j)(0) for j ∈ {0, ..., k − 1}. (2.2.4)

In this algorithm, what is not really explicit is how to obtain the system of nk equations with k unknown
functions Qj(x), j ∈ {0, ..., k − 1} from Equation

f (k)(x) +
k−1
∑

j=0

f (j)(x)Qj(x) = 0. (2.2.5)

Let us give some clarifications on how this is done. First of all, we expand completely Equation (2.2.5).
Afterwards we gather together summands that are similar to get an equation of the form

Rnk−1(x)Fnk−1(x) + ...+R1(x)F1(x) +R0(x)F0(x) = 0 with nk ∈ N, (2.2.6)

where Rl(x), l ∈ {0, ..., nk−1} are rational functions (and contain also Qj(x), j ∈ {0, 1, ..., k−1}) and
Fl(x), l ∈ {0, ..., nk− 1} are free of Qj(x) (j ∈ {0, 1, ..., k− 1}) and are linearly independent functions
over the field of rational functions Q(x). We can find illustrations of such rewriting of equation in
the second example, Equation (2.1.9) and the third example, Equation (2.1.18). Since the functions
Fl(x), l ∈ {0, ..., nk−1} are linearly independent, equating the coefficients of Fl(x), l ∈ {0, ..., nk−1}
in Equation (2.2.6) yields the following system of nk equations with k unknown functions Qj , j ∈
{0, ..., k − 1}































Rnk−1(x) = 0

Rnk−2(x) = 0

· · ·
R1(x) = 0

R0(x) = 0.

Section 2.2. General Procedure and Implementation in Maxima Page 7

In order to achieve every step presented above and build a function Holonomic DE(f,x) to compute
a IV-HDE of a given function f with respect to the variable x, we define many other functions having
different aims. Here are the functions we defined in our package with a brief description of their purpose:

• Polynomial P(Exp,x): this function checks whether Exp is a polynomial with respect to the
variable x or not. Let us remind that there is an embedded function polynomialp(p,L) in Maxima
which checks whether the expression p is a polynomial with respect to the given list of variables L.
But this embedded function failed to recognise for instance that exp(y)x+tan(y)x2 is a polynomial
with respect to x, reason why we decided to define the function Polynomial P(Exp,x);

• Rational P(Exp,x): this function uses the function Polynomial P to check whether the ex-
pression Exp is a rational function with respect to x or not;

• Terms functions(Fct): this function takes an expression Fct which is a sum of terms and
returns the list of terms occurring in the expression Fct.
As illustration: Terms function(cos(x) exp(x)+tan(x)+sin(x)) gives [cos(x) exp(x), tan(x), sin(x)];

• Group terms(Fct,x): this function takes a function Fct, uses the function Terms functions

and returns a list as output. In this list, each element is a sum of linearly dependent terms over
Q(x) occurring in Fct.
As illustration: Group terms(cos(x)+a sin(x)+bx2 cos(x), x) gives [[cos(x)+bx2 cos(x)], [a sin(x)]];

• Find p k(G,L): this function takes a list G of functions and a list L of unknown coefficients and
returns the solution of the system of equations obtained by assuming that each function in the list
G is equal to zero. As illustration: Find p k([a cos(x) − x2 cos(x), b sin(x) − sin(x)], [a, b]) gives
[x2, 1];

• Linear formal eq(f,x,n) takes a function f of the variable x and returns a linear combination
of f and its n derivatives and the list of the unknown coefficients of this linear combination.
As illustration: Linear formal eq(cos(x), x, 2) gives [− cos(x)− p1 sin(x)+ p0 cos(x), [p0, p1]];

• Coefficient diff eq(f,x): this function takes a function f of the variable x and returns the list
of the polynomial coefficients in the Holonomic DE satisfied by f in this way: [P0(x), P1(x), ..., Pk(x)]
where k here represents the order of the HDE.
As illustration: Coefficient diff eq(exp(x2 + 1), x) gives [−2x, 1];

• Reduce denominator(L): this function takes a list L of rational functions and returns the simplest
list of polynomials proportional to L.
As illustration: Reduce denominator([x/(1 − x), 3x2/(x2 − 1)]) gives [x + 1,−3x] (in this
example the coefficient of proportionality is x

x2−1
);

• Holonomic DE(f,x,F): this function takes a function f, its main variable x and returns an HDE
satisfied by f with F as unknown function in the HDE.

Let us recall that the maximal order MAX ORDER DERIVATIVE of the HDE in the algorithm above is
initialised to 4 and can be changed any time the user wants.

Section 2.3. Some Applications Page 8

2.3 Some Applications

In this part, we are going to present some results we obtained with our function Holonomic DE() de-
fined for the computation of the HDE of a given function f. Below is a snapshot of the computation of
the HDE of some functions using our function Holonomic DE().

In the above cases, MAX ORDER DERIVATIVE is 4 and we cannot obtain the HDE of sin5(x) (since the
order of the HDE of sin5(x) is 6). And if we keep trying we will have:

We increase the value of MAX ORDER DERIVATIVE in order to compute HDE of order greater than 4 as
shown in the examples below.

Section 2.3. Some Applications Page 9

3. Conversion of a Holonomic Differential
Equation to a Recurrence Equation

In the previous chapter, we saw how to get the IV-HDE of a given holonomic function f . After getting
this IV-HDE, on the way of computing the FPS of the function f , the next step is to convert the
IV-HDE into a recurrence equation with initial values (IV-RE) for the coefficients an of the power
series f(x) =

∑∞
n=0 anx

n. Indeed we assume that the solution of the HDE can be written as a power
series of the form

∑∞
n=0 anx

n and we substitute this into the differential equation in order to end with
a recurrence relation in an with initial values. In this chapter, the main point is the conversion of
an IV-HDE for f(x) to an IV-RE for an. The first part presents some illustrative examples of how
the conversion is done, the second part is the general procedure with its implementation in the CAS
Maxima, and in the last part we show some IV-REs computed using this algorithm.

3.1 Illustrative Examples

Let us start by giving some examples of conversion of an IV-HDE into an IV-RE starting from the
simplest case to more difficult ones. By the way, let us recall that the simplest conversion is when the
IV-HDE is

y′(x) = 0, y(0) = a. (3.1.1)

In this case, we end up obviously with the IV-RE

an = 0, ∀n > 0 and a0 = a.

Now let us consider the cases where the IV-HDE is different from (3.1.1).

3.1.1 Example. Let us consider the IV-HDE

y′(x)− y(x) = 0, y(0) = a.

The first thing is to write the solution y(x) in the form y(x) =
∑∞

n=0 anx
n. Afterwards, we formally

differentiate the series y(x) and plug it into the IV-HDE to get

∞
∑

n=1

nanx
n−1 −

∞
∑

n=0

anx
n = 0, a0 = a. (3.1.2)

Next, we make a change of indices such that we have the same power (n) of x in each series in Equation
(3.1.2). This leads to

∞
∑

n=0

(n+ 1)an+1x
n −

∞
∑

n=0

anx
n = 0, a0 = a, (3.1.3)

which is equivalent to
∞
∑

n=0

((n+ 1)an+1 − an)x
n = 0, a0 = a.

Thus we deduce the IV-RE

(n+ 1)an+1 − an = 0, ∀n ≥ 0, a0 = a. (3.1.4)

10

Section 3.1. Illustrative Examples Page 11

3.1.2 Example. Let us consider the IV-HDE

(x3 + 1)y′(x)− xy(x) = 0, y(0) = a.

As said previously, we assume that the solution of this IV-HDE can be written as a series y(x) =
∑∞

0 anx
n, we formally differentiate that series and we plug its formal derivatives into the IV-HDE.

Having done that, we get

(x3 + 1)
∞
∑

n=1

nanx
n−1 − x

∞
∑

n=0

anx
n = 0, y(0) = a. (3.1.5)

We expand Equation (3.1.5) to get

∞
∑

n=1

nanx
n+2 +

∞
∑

n=1

nanx
n−1 −

∞
∑

n=0

anx
n+1 = 0, y(0) = a. (3.1.6)

Now applying change of indices in order to have the common exponent n in each series yields

∞
∑

n=3

(n− 2)an−2x
n +

∞
∑

n=0

(n+ 1)an+1x
n −

∞
∑

n=1

an−1x
n = 0, y(0) = a,

which is equivalent to

∞
∑

n=2

(n− 2)an−2x
n +

∞
∑

n=0

(n+ 1)an+1x
n −

∞
∑

n=1

an−1x
n = 0, y(0) = a. (3.1.7)

In Equation (3.1.7) contrary to Equation (3.1.3), the sum starts at 2 for the first series, 0 for the second
one and 1 for the third one. Now we rewrite each series in order to have all the indices starting at the
same value. Let us remark that the final starting value of indices is the highest one in series occurring
in (3.1.7) and is 2. The first series will remain unchanged, the second and third series will be rewritten
respectively as

a1 + 2a2x+
∞
∑

n=2

(n+ 1)an+1x
n, −a0x−

∞
∑

n=2

an−1x
n.

Equation (3.1.7) becomes

∞
∑

n=2

(n− 2)an−2x
n + a1 + 2a2x+

∞
∑

n=2

(n+ 1)an+1x
n − a0x−

∞
∑

n=2

an−1x
n = 0, a0 = a,

which is equivalent to

a1 + (2a2 − a0)x+
∞
∑

n=2

((n− 2)an−2 + (n+ 1)an+1 − an−1)x
n = 0, a0 = a. (3.1.8)

Equating the coefficients of xn in Equation (3.1.8) yields the system:











a1 = 0

2a2 − a0 = 0

(n− 2)an−2 + (n+ 1)an+1 − an−1 = 0 ∀n ≥ 2.

(3.1.9)

Section 3.1. Illustrative Examples Page 12

The first 2 equations in (3.1.9) imply that a2 = a0/2 = a/2, a1 = 0 and we get the IV-RE

(n− 2)an−2 + (n+ 1)an+1 − an−1 = 0, ∀n ≥ 2 a0 = a, a1 = 0, a2 = a/2. (3.1.10)

Since we have indices in the recurrence equation in (3.1.10) strictly less than n, we shift the index n
(we replace n by n+ 2) in order to have the lowest index n and we finally obtain the IV-RE

{

(n+ 3)an+3 − an+1 + nan = 0 ∀n ≥ 0

a0 = a, a1 = 0, a2 = a/2.
(3.1.11)

3.1.3 Example. Let us consider the IV-HDE of the function f(x) = log(1− x2) given by

(

x3 − x
)

y′′(x) +
(

x2 + 1
)

y′(x) = 0, y(0) = 0, y′(0) = 0. (3.1.12)

Assuming that y(x) can be written as y(x) =
∑∞

n=0 anx
n, differentiate y(x) and substitute in (3.1.12)

to get

(

x3 − x
)

∞
∑

n=2

n(n− 1)anx
n−2 +

(

x2 + 1
)

∞
∑

n=1

nanx
n−1 = 0, a0 = 0, a1 = 0. (3.1.13)

After expanding Equation (3.1.13) we have

∞
∑

n=2

n(n−1)anxn+1−
∞
∑

n=2

n(n−1)anxn−1+
∞
∑

n=1

nanx
n+1+

∞
∑

n=1

nanx
n−1 = 0, a0 = 0, a1 = 0. (3.1.14)

We do a change of indices in Equation (3.1.14) in order to get the same exponent n in each series and
obtain

∞
∑

n=2

(n−1)(n−2)an−1x
n−

∞
∑

n=1

(n+1)(n)an+1x
n+

∞
∑

n=2

(n−1)an−1x
n+

∞
∑

n=0

(n+1)an+1x
n = 0, a0 = 0, a1 = 0.

(3.1.15)
Now, we rewrite Equation (3.1.15) as follows in order to have index in each series starting at the same
value 2

∞
∑

n=2

(n− 1)(n− 2)an−1x
n − 2a2x−

∞
∑

n=2

(n+ 1)(n)an+1x
n+

∞
∑

n=2

(n− 1)an−1x
n + a1 + 2a2x+

∞
∑

n=2

(n+ 1)an+1x
n = 0, a0 = 0, a1 = 0.

This is equivalent to

∞
∑

n=2

((n− 1)(n− 2)an−1 − n(n+ 1)an+1 + (n− 1)an−1 + (n+ 1)an+1)x
n = 0, a0 = 0, a1 = 0.

This leads to the system

{

(n− 1)2an−1 − (n+ 1)(n− 1))an+1 = 0 ∀n ≥ 2

a0 = 0, a1 = 0.
(3.1.16)

Section 3.2. General Procedure of Conversion and Implementation Page 13

By shifting the index n in (3.1.16), we finally obtain the IV-RE

{

n(n+ 2)an+2 − n2an = 0 ∀n ≥ 1

a0 = 0, a1 = 0.
(3.1.17)

Let us remark that the IV-RE (3.1.17) is incomplete since the value of a2 is not given. And without its
value, we cannot compute a2n, n ≥ 1, however this issue will be resolved in the next section.

From the given examples above, we can actually see how the conversion of an IV-HDE to an IV-RE is
done manually. The implementation of this conversion into programming follows the same steps.

3.2 General Procedure of Conversion and Implementation

Having given the above illustrative examples of the conversion of an IV-HDE into an IV-RE, let us now
present the general procedure of the conversion.
Before getting into the procedure, let us do some remarks. Suppose we want to convert the terms
xjy(k)(x) into their corresponding terms in the recurrence equation (with y(x) = f(x) =

∑∞
n=0 anx

n).
The term xjy(k)(x) from the differential equation corresponds to

xjy(k)(x) = xj
∞
∑

n=0

n(n− 1) · · · (n− k + 1)anx
n−k =

∞
∑

n=0

n(n− 1) · · · (n− k + 1)anx
n+j−k.

The change of index n← n+ k − j in order to have the exponent n gives

xjy(k)(x) =

∞
∑

n=j−k

(n+ k − j)(n+ k − j − 1) · · · (n− j + 1)an+k−jx
n,

which can be written as
∞
∑

n=j−k

(n− j + 1)kan+k−jx
n,

where the Pochhammer symbol is defined by:

(a)k =

{

1 if k = 0

a(a+ 1) · · · (a+ k − 1) if k ∈ N.

From that observation, we actually see that the corresponding term of xjy(k)(x) in the recurrence
equation is (n− j + 1)kan+k−j i.e.

HDE 99K RE

xjy(k)(x) 7→ (n− j + 1)kan+k−j . (3.2.1)

But since any HDE can be written as linear combination of terms of the form xjy(k)(x) i.e. in the form

N
∑

k=0





nk
∑

j=0

αj,kx
j



 y(k)(x) with αj,k constant and N, nk ∈ N,

Section 3.2. General Procedure of Conversion and Implementation Page 14

where N is the order the HDE and nk is the degree of the polynomial coefficient of y(k)(x), we can
deduce that using (3.2.1), any HDE can be converted into a holonomic recurrence equation (that means
linear homogeneous recurrence equation with polynomial coefficients). This brings a light on how we
convert an HDE to a recurrence equation. But how do we derive the initial values of the recurrence
equation? First of all, we transform any single initial condition in the IV-HDE into one initial value in
the recurrence equation using the formula

aj =
y(j)(0)

j!
. (3.2.2)

But from the result of the conversion of the IV-HDE in Example (3.1.2), Equation (3.1.11), we can
actually realise that the initial values coming from the direct conversion of initial conditions in the
IV-HDE are not always enough. So we need to find a way to complete initial values in the IV-RE
if necessary. By the way let us recall that in most cases the number of initial values in an IV-RE
corresponds to the order of the recurrence equation. For instance this is the case in the result of
conversion in Example (3.1.1), Equation (3.1.4) and in Example (3.1.2), Equation (3.1.11), but not in
Example (3.1.3), Equation (3.1.17). The reason why in Equation (3.1.17), the number of initial values is
greater than the order of the recurrence equation is that the recurrence equation n(n+2)an+2−n2an = 0
of (3.1.17) is valid only for n ≥ 1, which means the value of a2 is undefined reason why we need to
add a2 to the initial values to get all the terms with even indices (a2n). More generally, if we cannot
compute the value of some aq using the recurrence equation, we need to add aq to the initial values. In
order to manage the number of initial values in an IV-RE, we use the function f which generated that
IV-HDE and proceed as follows

• We convert the initial conditions of the HDE into the initial values of the IV-RE using the trans-
formation ak = y(k)(0)/k! where y(x) = f(x);

• We compute the order M of the RE, if M is greater than the number P of initial conditions in
the IV-HDE, we add M −P initial values to the IV-RE obtained from the conversion stated above
using the function f given;

• We look for the highest positive root R of the term having the highest order in the RE and we
also add R+ 1 initial values to the IV-RE obtained above using the function f given.

Having made those remarks, let us now give the general procedure we apply to get an IV-RE from an
IV-HDE satisfied by a holonomic function f .

1. We first expand the HDE of the IV-HDE into the form

N
∑

k=0

nk
∑

j=0

αj,kx
jy(k)(x).

2. We use the correspondence

xjy(k)(x) 7→ (n− j + 1)kan+k−j

to transform the HDE into a holonomic recurrence equation REq.

3. We convert the initial conditions of the HDE into initial values of the IV-RE using the formula
ak = y(k)(0)/k!.

Section 3.2. General Procedure of Conversion and Implementation Page 15

4. We compute the order M of the recurrence equation REq.

5. We compute the highest positive root R of the term having the highest index in REq.

6. If R does not exist, then we set it to -1.

7. If M +R+ 1 is greater than the number N of initial conditions in the IV-HDE, then we add the
following M +R+ 1−N initial values to the IV-RE obtained in step 3 using the function f

aq = f (q)(0)/q!, q ∈ {N, ...,M +R}.

8. Otherwise the IV-RE obtained in step 3 is complete.

In order to achieve every step presented above and build a function Holonomic RE(f,x) to compute
an IV-RE of a given function f of the variable x, we define many other functions having different aims.
Here are the main functions we use for this purpose in our package with their brief description:

• Pol DE to RE Exp(pol,x,k,a,n): This function transforms pol×y(k)(x) into its corresponding
term in the recurrence equation using the correspondence xjy(k)(x) −→ (n − j + 1)kan+k−j ,
where pol is a polynomial of the variable x. For instance if pol = x2 + 1, and k=1, the ouput
of this function is the corresponding term of (x2 + 1)y′(x) in the recurrence equation.
Illustration: Pol DE to RE Exp(x2+1,x,1,a,n) returns (n+1)*a[n+1]+(n-1)*a[n-1];

• List pol DE to RE(List pol,x,a,n): The role of this function is to compute a recurrence
equation of a list of polynomials List pol of the variable x using the function Pol DE to RE Exp().
Here we suppose that if List pol is [p0(x), p1(x), ..., pn(x)], then the output is the recurrence
equation of the differential equation p0(x)y(x) + p1(x)y

′(x) + · · ·+ pn(x)y
(n)(x) = 0.

For instance, if we consider List pol = [x2,1,-1], then the result obtained from the function
List pol DE to RE(List pol,x,a,n) is the recurrence equation corresponding to the differen-
tial equation x2y(x) + y′(x)− y′′(x) = 0.
Illustration: List pol DE to RE([x2,-1,1],x,a,n) returns
(n+1)*(n+2)*a[n+2]-(n+1)*a[n+1]+a[n-2]=0;

• Order RE of DE(DE,x,F): This function takes an HDE DE and returns the integer K such that
the RE obtained from the HDE DE can be written as

∑K
j=0 cj(n)an+j with cK(n) 6= 0.

For instance if we consider DE to be: diff(F(x),x,2) - diff(F(x),x,1) + x2*F(x)=0, from
the illustration above the corresponding RE is (n+1)*(n+2)*a[n+2]-(n+1)*a[n+1]+a[n-2]=0
which is equivalent to (n+3)*(n+4)*a[n+4]-(n+3)*a[n+3]+a[n]=0. From that we can deduce
the result K = 4 of the function Order RE of DE(DE,x,F). By the way let us remark that this
function does not compute the RE but uses once more the correspondence (3.2.1) to find out the
order K.
Illustration: Order RE of DE(diff(F(x),x,2) - diff(F(x),x,1) + x2*F(x)=0,x,F) returns
4;

• Shift RE(Req,n,a): This function takes a RE Req in an and shifts the indices of Req if there are
terms of the form an−k, k = 1, 2, ... in order to have only terms of the form an+k, k = 0, 1, 2,
Illustration: Shift RE((n+1)*(n+2)*a[n+2]-(n+1)*a[n+1]+a[n-2]=0,n,a) returns
(n+3)*(n+4)*a[n+4]-(n+3)*a[n+3]+a[n]=0;

Section 3.3. Some Applications Page 16

• DE to RE(DE,F,x,a,n): This function takes a differential equation DE of unknown F(x), uses
the functions List pol DE to RE() and Pol DE to RE Exp() and returns the RE (in an) resulting
from the conversion of the HDE DE.
Illustration: DE to RE(diff(F(x),x,1)-F(x)=0,F,x,a,n) returns [(n+1)*a[n+1]-a[n]=0] ;

• Highest factor root(RE,a,n): This function takes a recurrence equation RE and returns the
highest positive integer root of the factor of an+M where M is the highest index k of the an+k

appearing in the recurrence equation.
Illustration: Highest factor root((n+1)*(n-2)*(n-1)*a[n+3]-(n+2)*a[n]=0,a,n) returns
2;

• Holonomic RE(f,x,a,n): This function takes a function f, of the variable x, and gives back the
IV-RE satisfied by the coefficients an in the FPS of f. Indeed this function proceeds as follows:
it first computes the IV-HDE satisfied by f using the function Holonomic DE(), next the HDE
is transformed using the function DE to RE into a RE and initial conditions of the IV-HDE are
converted into initial values of the IV-RE. Afterwards the values of M and R defined in the above
algorithm are computed through the functions Order RE of DE() and Highest factor root().
Finally, using M, R and the function f, we complete if necessary the initial values of the IV-RE to
get the full IV-RE.
Illustrations: Holonomic RE(exp(x),x,a,n) returns [(n+1)*a[n+1]-a[n]=0,a[0]=1].

3.3 Some Applications

In this part, we present some results we obtain with our function Holonomic RE() defined for compu-
tating an IV-RE of a given function f. Below is a snapshot of the computation of the IV-RE of some
functions using our function Holonomic RE().

4. Resolution of Recurrence Equations of
Hypergeometric Type

The resolution of an IV-RE obtained after conversion of an IV-HDE generated from a function f is one
of the crucial and more tricky step in the computation of the FPS of f . Indeed among the family of
REs, only REs of hypergeometric type (i.e. REs in an such that the quotient an+m

an
is a rational function

in n for some natural number m) can be handled easily. However in the process of finding the FPS of
holonomic functions, we will not always get REs of hypergeometric type. In fact, even for hypergeometric

functions (i.e. functions having an FPS
∑∞

n=0 anx
n such that an+1

an
=

(n+α1)···(n+αp)
(n+β1)···(n+βq)

with p, q positive

integers and αi and βj complex numbers ∀i ∈ {1, ..., p} and ∀j ∈ {1, ..., q}), our procedure for getting
the HDE does not guarantee a DE leading to a RE of hypergeometric type. For instance the function
f(x) = exp(x) sin(x) is hypergeometric, it satisfies the HDE f (4)(x) + 4f(x) = 0, which yields the RE
of hypergeometric type (n + 4)(n + 3)(n + 2)(n + 1)an+4 + 4an = 0. But our procedure gives the
HDE f ′′(x)− 2f ′(x) + 2f(x) = 0 which yields the RE (n+ 2)(n+ 1)an+2 − 2(n+ 1)an+1 + 2an = 0
which is not of hypergeometric type. But the Petkovsek-van-Hoeij algorithm [5, Chapter 9] which deals
with non-hypergeometric type recurrence equations is not available in the CAS Maxima. In order to
solve the IV-RE obtained after conversion of an IV-HDE, in the case we have a RE of hypergeometric
type, we use the procedure that we will present in this chapter, otherwise we use the embedded solver
solve rec() of REs of Maxima. In this chapter, using some examples, we will show how we solve REs
of hypergeometric type, next we will present the general procedure of resolution of such types of REs
with some applications.

4.1 Illustrative Examples

In this part, we illustrate the process of solving REs of hypergeometric type by practical resolution going
from simple cases to more difficult ones.

4.1.1 Example. Let us consider the IV-RE satisfied by the coefficients an in the power series represen-
tation

∑∞
n=0 anx

n of the function f(x) = exp(x) + 1 given by

(n+ 2)an+2 − an+1 = 0, ∀n ≥ 0, a0 = 2, a1 = 1.

From that RE, we can get a general formula of the terms an with n ≥ 1. This suggests to define a new
sequence bn = an+1 which satisfies the IV-RE

(n+ 2)bn+1 − bn = 0, ∀n ≥ 0, b0 = 1.

From this RE, we deduce that

bn =
bn−1

n+ 1
⇒ bn =

b0
(n+ 1)!

=
1

(n+ 1)!
.

Hence we deduce the solution of our initial IV-RE given by

an+1 =
1

(n+ 1)!
, ∀n ≥ 0, or an =

1

n!
, ∀n ≥ 1, and a0 = 2. (4.1.1)

17

Section 4.1. Illustrative Examples Page 18

4.1.2 Example. Let us consider the following IV-RE satisfied by the coefficients an in the power series
representation

∑∞
n=0 anx

n of the function f(x) = log(1− x2):

n2an − n (n+ 2) an+2 = 0, ∀n ≥ 1, a0 = 0, a1 = 0, a2 = −1. (4.1.2)

Since n ≥ 1 in the RE above, we can divide the RE by the common factor n to get

nan − (n+ 2) an+2 = 0 ∀n ≥ 1, a0 = 0, a1 = 0, a2 = −1. (4.1.3)

Since the recurrence equation has only terms an and an+2, then in order to compute ak we use
ak−2, ∀k ≥ 3. This implies that we compute a3 from a1, a4 from a2 and in general, we compute
a2(n+1) from a2n and a2(n+1)+1 from a2n+1. This suggests the definition of the 2 following sequences:

an,1 = a2n+1 and an,2 = a2n+2.

Note that we do not define an,2 = a2n to keep n ≥ 0 and not n ≥ 1. Indeed if we define an,2 = a2n,
then the recurrence equation of an,2 will be valid only for n ≥ 1, what we do not want. Substituting
n by 2n + 1 (respectively 2n + 2) in (4.1.3) we get the IV-REs satisfied by an,1 (respectively an,2) as
follows:

(2n+ 3)an+1,1 = (2n+ 1)an,1, ∀n ≥ 0, a0,1 = 0

(2n+ 4)an+1,2 = (2n+ 2)an,2, ∀n ≥ 0, a0,2 = −1,

which leads to

an,1 = 0, ∀n ≥ 0,

an,2 =
2n

2n+ 2
× 2n− 2

2n
× · · · × 4

6
× 2

4
× a0,2 = −

2

2n+ 2
= − 1

n+ 1
, ∀n ≥ 0.

We deduce the solution of our initial IV-RE given by

a2n+1 = 0, a2n+2 = −
1

n+ 1
, ∀n ≥ 0, a0 = 0. (4.1.4)

4.1.3 Example. Let us consider the IV-REs satisfied by the coefficients an in the FPS of the function
f(x) = arctan(x2) given by

(n+ 2) (n+ 4) an+4 + n (n+ 2) an = 0, ∀n ≥ 0 a0 = 0, a1 = 0, a2 = 1, a3 = 0,

which is equivalent to

(n+ 4) an+4 + nan = 0, ∀n ≥ 0 a0 = 0, a1 = 0, a2 = 1, a3 = 0. (4.1.5)

From the RE above, we compute a4 from a0, a5 from a1, a6 from a2, a7 from a3 and in general to
compute the term ak we use the fourth preceding term ak−4, ∀k ≥ 4. This leads us to the definition
of the 4 following sequences:

an,0 = a4n, an,1 = a4n+1, an,2 = a4n+2 and an,3 = a4n+3.

Substituting n by 4n (respectively 4n + 1, 4n + 2 and 4n + 3) in (4.1.5), we obtain the 4 following
IV-REs of first order satisfied by an,0 (respectively an,1, an,2 and an,3):

(4n+ 4)an+1,0 + 4nan,0 = 0, ∀n ≥ 0, a0,0 = 0,

(4n+ 5)an+1,1 + (4n+ 1)an,1 = 0, ∀n ≥ 0, a0,1 = 0,

(4n+ 6)an+1,2 + (4n+ 2)an,2 = 0, ∀n ≥ 0, a0,2 = 1,

(4n+ 7)an+1,3 + (4n+ 3)an,3 = 0, ∀n ≥ 0, a0,3 = 0.

Section 4.1. Illustrative Examples Page 19

This implies that

an,0 = 0, ∀n ≥ 0,

an,1 = 0, ∀n ≥ 0,

an,2 =

(

−2n− 1

2n+ 1

)

×
(

−2n− 3

2n− 1

)

× · · · ×
(

−3

5

)

×
(

−1

3

)

a0,2 =
(−1)n
2n+ 1

, ∀n ≥ 0,

an,3 = 0, ∀n ≥ 0.

Hence we deduce that the general solution of our initial IV-RE is given ∀n ≥ 0 by

a4n+k =







(−1)n
2n+ 1

if k = 2,

0 if k = 0, 1, 3. (4.1.6)

4.1.4 Example. Let us consider the IV-RE

(3n+ 8)an+5 − (2n+ 7)an+2 = 0, ∀n ≥ 0, a0 = a1 = 1, a2 = a3 = a4 = 2. (4.1.7)

In the recurrence equation (4.1.7), the lowest index is n+ 2, which suggests that we may consider the
sequence bn = an+2 and look for its IV-RE which is

(3n+ 8)bn+3 − (2n+ 7)bn = 0, ∀n ≥ 0, b0 = b1 = b2 = 2. (4.1.8)

Next, we define 3 sequences bn,0, bn,1 and bn,2 as

bn,k = b3n+k, k = 0, 1, 2.

Substituting n by 3n (respectively 3n+ 1 and 3n+ 2) we get the IV-REs satisfied by bn,0 (respectively
bn,1 and bn,2)

(9n+ 8)bn+1,0 − (6n+ 7)bn,0 = 0 ∀n ≥ 0, b0,0 = 2,

(9n+ 11)bn+1,1 − (6n+ 9)bn,1 = 0 ∀n ≥ 0, b0,1 = 2,

(9n+ 14)bn+1,2 − (6n+ 11)bn,2 = 0 ∀n ≥ 0, b0,2 = 2.

This leads to the following equations:

bn+1,0

bn,0
=

6(n+ 7/6)

9(n+ 8/9)
,

bn+1,1

bn,1
=

6(n+ 3/2)

9(n+ 11/9)
,

bn+1,2

bn,2
=

6(n+ 11/6)

9(n+ 14/9)
, ∀n ≥ 0, b0,2 = 2, b0,1 = 2, b0,2 = 2,

which yield

bn,0 = 2
2(n− 1 + 7/6)

3(n− 1 + 8/9)
× 2(n− 2 + 7/6)

3(n− 2 + 8/9)
× · · · × 2(1 + 7/6)

3(1 + 8/9)
× 2(7/6)

3(8/9)

= 2
2n

3n
(n− 1 + 7/6)(n− 2 + 7/6) · · · (1 + 7/6)(7/6)

(n− 1 + 8/9)(n− 2 + 8/9) · · · (1 + 8/9)(8/9)
,

bn,1 = 2
2(n− 1 + 3/2)

3(n− 1 + 11/9)
× 2(n− 2 + 3/2)

3(n− 2 + 11/9)
× · · · × 2(1 + 3/2)

3(1 + 11/9)
× 2(3/2)

3(11/9)

= 2
2n

3n
(n− 1 + 3/2)(n− 2 + 3/2) · · · (1 + 3/2)(3/2)

(n− 1 + 11/9)(n− 2 + 11/9) · · · (1 + 11/9)(11/9)
,

bn,2 = 2
2(n− 1 + 11/6)

3(n− 1 + 14/9)
× 2(n− 2 + 11/6)

3(n− 2 + 14/9)
× · · · × 2(1 + 11/6)

3(1 + 14/9)
× 2(11/6)

3(14/9)

= 2
2n

3n
(n− 1 + 11/6)(n− 2 + 11/6) · · · (1 + 11/6)(11/6)

(n− 1 + 14/9)(n− 2 + 14/9) · · · (1 + 14/9)(14/9)
.

Section 4.2. General Procedure of Resolution of IV-REs of Hypergeometric Type Page 20

Using the Pochhammer symbol (a)k, we deduce that

bn,0 = 2
2n(7/6)n
3n(8/9)n

, bn,1 = 2
2n(3/2)n
3n(11/9)n

, bn,2 = 2
2n(11/6)n
3n(14/9)n

.

Thus we can deduce that the general solution of our initial IV-RE is given by

a3n+2 =
2n+1(7/6)n
3n(8/9)n

, a3n+3 =
2n+1(3/2)n
3n(11/9)n

, a3n+4 =
2n+1(11/6)n
3n(14/9)n

, ∀n ≥ 0, a0 = a1 = 1.

(4.1.9)

From the examples above, we can actually see how we handle the resolution of IV-REs of hypergeometric
type. Let us move to the general procedure and its implementation in Maxima.

4.2 General Procedure of Resolution of IV-REs of Hypergeometric
Type

Before getting into the general procedure, let us give the general form of an IV-RE of hypergeometric
type:

Q(n)an+m+p + P (n)an+p = 0, ak = αk, k ∈ {0, 1, ..., p+m− 1} with αk given, (4.2.1)

where m and p are positive integers and Q(n), P (n) are polynomials in the variable n. We remark that
by substituting n by mn+ l in the RE (4.2.1), we obtain

Q(mn+ l)am(n+1)+p+l + P (mn+ l)amn+p+l = 0. (4.2.2)

Defining bn,l = amn+p+l, with b0,l = ap+l, Ql(n) = Q(mn+ l), Pl(n) = P (mn+ l), Equation (4.2.2)
becomes

Ql(n)bn+1,l + Pl(n)bn,l = 0, ∀n ≥ 0, b0,l = ap+l. (4.2.3)

For l from 0 to m− 1, we have m IV-REs of first order

Ql(n)bn+1,l + Pl(n)bn,l = 0, ∀n ≥ 0, b0,l = ap+l, l ∈ {0, 1, ...,m− 1}. (4.2.4)

We can solve all the above IV-REs using the embedded REs solver solve rec() of the CAS Maxima.
Let us now move to the algorithm.

Algorithm of resolution of an IV-RE of hypergeometric type on the form (4.2.1)

• We define an index l.

• For l from 0 to m− 1 we do the following:

1. We define the sequence bn,l = amn+p+l,

2. We define polynomials Ql(n) = Q(mn+ l) and Pl(n) = P (mn+ l),

3. Using the function solve rec() of the CAS Maxima, we solve the IV-RE

Ql(n)bn+1,l + Pl(n)bn,l = 0 ∀n ≥ 0, b0,l = ap+l,

Section 4.3. Some Applications Page 21

4. We set amn+p+l = bn,l,

• Finally the general solution of the IV-RE is given by

amn+p+l = bn,l, ∀n ≥ 0, l ∈ {0, 1, ...,m− 1}, ak = αk, k ∈ {0, ..., p− 1}. (4.2.5)

In our package, in order to solve IV-REs, we defined a function Solve Rec(). This function takes 4
arguments: the RE, the variables a and n occurring in the RE, and a list L containing the initial values
a0, a1, ..., ap+m−1. Firstly the function shifts indices if indices of the form n− k with k = 0, 1, ... occur
in the RE. Secondly it computes m and p appearing in (4.2.1) and checks whether the number of initial
values is enough (i.e. at least m+p). Thirdly it checks whether the given RE is of hypergeometric type
or not. If the RE is of hypergeometric type then it applies the algorithm above to compute the general
solution, otherwise it tries to solve the IV-RE satisfied by bn = an+p using the function solve rec()

of Maxima. If the solve rec() function is not able to solve the IV-RE, the function returns false
otherwise it gives the general solution found adding the p initial values ak, k ∈ {0, 1, ..., p− 1}. Let us
move now to some applications.

4.3 Some Applications

Using our algorithm, we solve some IV-REs as shown below:

5. Formal Power Series of Rational Functions

This chapter presents the procedure for computing the FPS of rational functions. Indeed, for rational
functions, the procedure presented in the three first chapters will not always be satisfactory since there
are rational functions for which that procedure gives a recurrence equation not of hypergeometric
type and which also fails to be solved by the recurrence equation solver of Maxima, like the function
f(x) = (1 + x2)/(1 − x2). For this reason, we use another procedure to deal with rational functions.
The first section presents some illustrative examples on how we get the FPS of rational functions, the
second section gives the general procedure used to compute the FPS of rational functions and the third
section shows some applications of this procedure.

5.1 Illustrative Examples

Let us start by giving some examples of conversion of a rational function into an FPS starting from the
simplest cases to more difficult ones. By the way let us recall that the simplest conversion occurs when
the rational function is a polynomial function in which case it is itself its FPS. Now let us consider cases
where the rational function is not a polynomial.

5.1.1 Example. Let us consider the rational function f(x) = 1
1−x .

If we compute the n−th derivative of f(x) at the point x = 0, we will get n!, meaning that the FPS of
the function f is

∑∞
n=0 x

n. But we could have also used the following formula

FPS

(

1

(1− x)k

)

=

∞
∑

n=0

(

n+ k − 1

n

)

xn, k = 1, 2, ..., (5.1.1)

from which we deduce the FPS of f(x)

1

1− x
=

∞
∑

n=0

xn.

5.1.2 Example. Let us consider the rational function f(x) = 2 (x+3)

(x+1)2
.

We compute the partial fraction decomposition (PFD) of the function f , i.e. we decompose the function
f on the form

m
∑

n=1

(

dn1
x− rn

+
dn2

(x− rn)2
+ · · ·+ dnpn

(x− rn)pn

)

, dni, rn ∈ C, i ∈ {1, 2, ...pn}, pn ∈ N.

Since the denominator of f(x) is (x+ 1)2, this suggests a decomposition of the form

f(x) =
a

x+ 1
+

b

(x+ 1)2
.

This equation leads to
2x+ 6

(1 + x)2
=

ax+ a+ b

(1 + x)2
,

which yields a = 2 and b = 4. Thus we get

f(x) =
2

x+ 1
+

4

(x+ 1)2
.

22

Section 5.1. Illustrative Examples Page 23

Next we use the formula (5.1.1) to get the FPS of each summand in the above expression of f(x) as

2

x+ 1
= 2

∞
∑

n=0

(

n

n

)

(−x)n and
4

(x+ 1)2
= 4

∞
∑

n=0

(

n+ 1

n

)

(−x)n.

From those expressions, we deduce the FPS of f(x) as

2 (x+ 3)

(x+ 1)2
=

∞
∑

n=0

(−1)n(4n+ 6)xn.

5.1.3 Example. Let us consider the rational function f(x) = x+1
x2+x+1

.
We start by factorising the denominator of f(x) over the field C as follows:

x2 + x+ 1 =

(

x−
√
3i− 1

2

)(

x+

√
3i+ 1

2

)

.

Next we look for the partial fraction decomposition of f(x) of the form

f(x) =
a

x−
√
3i−1
2

+
b

x+
√
3i+1
2

.

This equation leads us to

x+ 1

x2 + x+ 1
=

(2b+ 2a)x+ (1−
√
3i)b+ (

√
3i+ 1)a

2(x2 + x+ 1)
,

which is equivalent to the following system of equations
{

b+ a = 1

(1−
√
3i)b+ (

√
3i+ 1)a = 2.

The solution of this system is a = 3−
√
3i

6 and b =
√
3i+3
6 , hence we deduce the PFD of f(x) as

f(x) =
3−
√
3i

3(2x− (
√
3i− 1))

+
3 +
√
3i

3(2x+
√
3i+ 1)

.

Now we put each summand in the form α
1−βx as follows:

3−
√
3i

3(2x− (
√
3i− 1))

=
α1

1− β1x
, with α1 = −

3−
√
3i

3(
√
3i− 1)

, β1 =
2√

3i− 1
,

3 +
√
3i

3(2x+
√
3i+ 1)

=
α2

1− β2x
, with α2 =

3 +
√
3i

3(
√
3i+ 1)

, β2 = −
2√

3i+ 1
.

With f(x) written in the form

f(x) =
α1

1− β1x
+

α2

1− β2x
,

we use the formula (5.1.1) and deduce the FPS of f(x) as

f(x) = α1

∞
∑

n=0

βn
1 x

n + α2

∞
∑

n=0

βn
2 x

n,

with

α1 = −
3−
√
3i

3(
√
3i− 1)

, β1 =
2√

3i− 1
, α2 =

3 +
√
3i

3(
√
3i+ 1)

, β2 = −
2√

3i+ 1
.

Section 5.1. Illustrative Examples Page 24

5.1.4 Example. Let us consider the rational function f(x) = x5+x2+1
−x4+5x2−4

.
Since the degree of the numerator is greater than the degree of the denominator, we start by doing the
polynomial division with remainder of the numerator by the denominator of f(x) and rewrite f(x) as

f(x) = −x− 5x3 + x2 − 4x+ 1

x4 − 5x2 + 4
.

Next we factorise the denominator of the fraction in f(x) into a product of polynomials of degree 1 and
rewrite f(x) as:

f(x) = −x− 5x3 + x2 − 4x+ 1

(x− 2)(x+ 2)(x− 1)(1 + x)
.

Now we compute the partial fraction decomposition of the above fraction in f(x). The complete linear
factorisation of the denominator in this fraction induces that its PFD is of the form

5x3 + x2 − 4x+ 1

(x− 2)(x+ 2)(x− 1)(1 + x)
=

a

x− 2
+

b

x+ 2
+

c

x− 1
+

d

x+ 1
.

The complete expansion of both sides of this equation leads to

5x3 + x2 − 4x+ 1

x4 − 5x2 + 4
=

1

x4 − 5x2 + 4
[(d+ c+ b+ a)x3 + (−d+ c− 2b+ 2a)x2

+ (−4d− 4c− b− a)x+ 4d− 4c+ 2b− 2a],

which yields the system of equations


















a+ b+ c+ d = 5

2a− 2b+ c− d = 1

a+ b+ 4c+ 4d = 4

2a− 2b+ 4c− 4d = −1.
The solution of this system is a = 37/12, b = 9/4, c = −1/2 and d = 1/6. Hence we obtain the full
PFD of f(x) as

f(x) = −x− 9

4 (x+ 2)
− 1

6 (x+ 1)
+

1

2 (x− 1)
− 37

12 (x− 2)
,

which can be rewritten as

f(x) = −x− 9/8

1− (−x/2) −
1/6

1− (−x) −
1/2

1− x
+

37/24

1− (x/2)
.

Using the formula (5.1.1), we deduce the FPS of f(x) as

x5 + x2 + 1

−x4 + 5x2 − 4
= −x− 9

8

∞
∑

n=0

(−1)nxn
2n

+
37

24

∞
∑

n=0

xn

2n
− 1

6

∞
∑

n=0

(−1)nxn − 1

2

∞
∑

n=0

xn,

which can be rewritten as

x5 + x2 + 1

−x4 + 5x2 − 4
= −x−

∞
∑

n=0

(

9(−1)n
2n+3

− 37

3(2n+3)
+

(−1)n
6

+
1

2

)

xn.

Having given those examples, we can move to the general procedure for computing the FPS of rational
functions.

Section 5.2. General Procedure for Computing Formal Power Series of Rational Functions Page 25

5.2 General Procedure for Computing Formal Power Series of Rational
Functions

The general procedure for converting a rational function f(x) = N(x)
Q(x) (where N(x) and Q(x) are

polynomials) into an FPS is as follows:

• We first do the polynomial division with remainder of N(x) by Q(x) and we call P (x) the quotient
and R(x) the remainder such that

f(x) = P (x) +
R(x)

Q(x)
with deg(R(x)) < deg(Q(x));

• We do the complete linear factorisation of Q(x) over the field C, such that

Q(x) = (x− α1)
p1(x− α2)

p2 · · · (x− αm)pm with αi ∈ C, and pi ∈ N, ∀i ∈ {1, ...,m};

• We write R(x)
Q(x) as

R(x)

Q(x)
=

m
∑

k=1

(

dk1
x− αk

+
dk2

(x− αk)2
+ · · ·+ dkpk

(x− αk)pk

)

(5.2.1)

where dki, i ∈ {1, 2, ..., pk} are unknown real or complex numbers;

• Writing the right-hand side of Equation (5.2.1) in normal form and equating the numerators, we
get

R(x) = G0 +G1x+ · · ·+Glx
l (5.2.2)

where l ∈ N, and Gi, ∀i ∈ {0, 1..., l} are functions of dki, k ∈ {1, 2, ...,m} and i ∈ {1, 2, ..., pk};

• We equate coefficients of x in Equation (5.2.2) and obtain a system of equations of the form































G0 = r0

G1 = r1

...

Gl−1 = rl−1

Gl = rl,

(5.2.3)

where ri, i from 0 to l is the coefficient of xi in the polynomial R(x);

• We solve the system (5.2.3) and get the values of dki, i from 1 to pk and k from 1 to m, this
yields the PFD of f(x) as

f(x) = P (x) +

m
∑

k=1

(

dk1
x− αk

+
dk2

(x− αk)2
+ · · ·+ dkpk

(x− αk)pk

)

;

• We rewrite f(x) as

f(x) = P (x) +
m
∑

k=1

(

− dk1/αk

1− (x/αk)
+

dk2/(αk)
2

(1− (x/αk))2
+ · · ·+ (−1)pk dkpk/(αk)

pk

(1− (x/αk))pk

)

;

Section 5.3. Some Applications Page 26

• We deduce using the formula (5.1.1) the FPS of f(x) as

P (x) +

∞
∑

n=0

(

m
∑

k=1

(

1

αn
k

)(

−dk1
αk

+ (n+ 1)
dk2
(αk)2

+ · · ·+ (−1)pk
(

n+ pk − 1

n

)

dkpk
(αk)pk

)

)

xn.

In order to achieve all the steps presented above and obtain the FPS of a given rational function f , we
define the following functions:

1. Complex Fact(Exp,var): this function takes a polynomial Exp and returns its full linear factori-
sation with respect to var over the field C of complex numbers if possible otherwise returns false.
Illustration: Complex Fact(x6 − 11x5 + 46x4 − 92x3 + 99x2 − 81x+ 54, x) returns
(x− 3)3 (x− 2) (x− i) (x+ i).

2. Part Frac(f,var): this function takes a rational function f and returns its full PFD in the form
of a list of 2 elements. The first element is the polynomial part and the second element is the
purely rational part in the PFD of f.
Illustration: Part Frac(x4+2x2+5x+6

x2+2x+1
, x) returns [x2 − 2x+ 5, 4

(x+1)2
− 3

x+1].

3. Frac to FPS coef(Fract,var,m): this function takes a rational function Fract on the form
a

(cx+d)k
and returns the formula of the coefficient an appearing in the FPS

∑∞
n=0 anx

n of Fract.

Illustration: Frac to FPS coef(1
(1+x)2

, x, n) returns (n+ 1) (−1)n+2.

4. Fract FPS(g,var): this function takes a function g of the main variable var and returns its FPS
if g is rational and false otherwise.

Having presented the above general procedure for computing FPS of rational functions, let us give some
applications.

5.3 Some Applications

In the snapshot below, we present FPS of some rational functions obtained using the function Fract FPS()

of our package.

6. The Formal Power Series Algorithm

In the previous chapters, we focused on the presentation and implementation of the different steps of the
general procedure for computing FPS of holonomic functions or rational functions. In this chapter, we
present the general algorithm presented in [3] (see also [4]) for computing the FPS of a rational function
or a holonomic function and its implementation in Maxima. We also present applications, add-ons, and
finish with some general remarks about the package we built in Maxima.

6.1 General Procedure for Computing Formal Power Series

The general algorithm for computing FPS of a given function f(x) that we implemented in Maxima can
be found in [3, Section 3, Algorithm 3.1, Page 589] and is given as follows:

1. We set 2 variables: N1 = MAX ORDER DERIVATIVE, the maximal order of the HDE generated
for f , N2=MAX ORDER DERIVATIVE RAT, the number of derivatives we compute to get a rational
function.

2. If f(x) is rational then we compute its FPS using the algorithm in Chapter 5. Otherwise, we
compute the first N2 − 1 derivatives f ′(x), f ′′(x), ..., f (N2−1)(x) of the function f(x). If there
exists k ∈ {1, ..., N2 − 1} such that the k−th derivative of f(x) is a rational function, then we
proceed as follows:

• We compute the FPS of f (k)(x) using the algorithm presented in Chapter 5;

• We integrate the FPS of f (k)(x) k times and add f(0)+ f ′(0)x+ · · ·+ f (k−1)(0)
(k−1)! xk−1 to get

the FPS of f(x);

3. Otherwise if f(x) is not rational and none of it first N2− 1 derivatives is rational, then we search
an HDE satisfied by the function f(x) using the algorithm presented in Chapter 2.

4. We convert the HDE obtained in step 3 into an IV-RE using the algorithm presented in Chapter
3.

5. We try to solve the IV-RE obtained in step 4 using the algorithm presented in Chapter 4.

6. If the resolution is successful, we have the coefficients of our FPS. Otherwise, we print out the
IV-RE.

In our package, there are 3 main functions to compute the FPS of a given function.

• The function HOLO FPS(f,x): this function takes a function f and its main variable x and
computes its FPS using the following steps: it computes the IV-HDE satisfied by f, then con-
verts it to an IV-RE (using the function Holonomic RE()), solves this IV-RE (using the function
Solve Rec()), and returns the FPS of f.

• The function RAT FPS(f,x): this function takes a function f and its main variable x. Using the
procedure for rational functions presented in Chapter 5, it computes the FPS of f if f or one of
the first MAX ORDER DERIVATIVE RAT−1 derivatives of f is a rational function with respect to x,
or it returns f otherwise.

27

Section 6.1. General Procedure for Computing Formal Power Series Page 28

• The function FPS(f,x): this function applies the algorithm presented above to compute the FPS
of a function f. If the given function f does not have a rational derivative and is a sum of
functions, then this function computes the FPS of each summand in the expression of f(x) and
adds those FPS to get the FPS of the function f.

We also extended this work and implemented the computation of formal Laurent series (series of the
form

∑∞
n=n0

anx
n with n0 ∈ Z) and Puiseux series (series of the form

∑∞
n=n0

anx
n/q for some q ∈ N

and n0 ∈ Z). And since this is beyond the scope of this essay topic, we will just mention results of those
forms without presenting the full algorithm of how those computations of formal Laurent and Puiseux
series are done. The computation of those series (Laurent and Puiseux) is done using the function
HLP FPS(f,x) which takes 2 arguments: the function f and its main variable x.
In order to allow the users to have some flexibility and easily adapt the outputs according to their need,
we defined many global variables accessible and modifiable by the user. Those variables are listed below
with their descriptions.

• MAX ORDER DERIVATIVE: this variable represents the maximal order of an HDE generated from a
given function f, its default value is 4.

• MAX ORDER DERIVATIVE RAT: this variable (equal to 4 by default) represents the maximum num-
ber of derivatives of the function f we have to compute to get one of them rational. This variable
is used in the function FPS() and also in the function RAT FPS().

• COMPLEX COEFF: this is a boolean variable (equal to false by default) which gives the user the
possibility to have FPS with complex coefficients or FPS with real coefficients. Indeed, if this
variable is false, then the coefficients in the FPS are replaced by their real parts. This is justified
by the fact that for a real function f(x), the FPS must have real coefficients (since the coefficient

an appearing in the FPS is nothing but f (n)(0)
n!). If this variable is set to true, no conversion of

complex to real coefficients is done.

• Initial values DE: this boolean variable (equal to true by default) influences the output of the
function Holonomic DE(). In fact, if this variable is true, then the function Holonomic DE()

returns an IV-HDE, otherwise it returns an HDE without initial conditions.

• Initial values RE: this boolean variable (equal to true by default) influences the output of the
function Holonomic RE(). In fact, if this variable is true, then the function Holonomic RE()

returns an IV-RE, otherwise it returns a holonomic recurrence equation without initial values.

• Factoring Coef DE: this boolean variable (equal to true by default) influences the output of the
function Holonomic DE(). If this variable is true, then the polynomial coefficients in the HDE
are factorised, otherwise those coefficients are not factorised. Indeed, it is always nice to see the
HDE with factorised coefficients. However for HDE with high degree polynomial coefficients, with
this factorisation, the function Holonomic DE() may need a lot of time before returning the HDE
reason why we define such a variable.

• Factoring Coef RE: this boolean variable (equal to true by default) influences the output of
the function Holonomic RE(). If this variable is true, then the polynomial coefficients in the
holonomic recurrence equation are factorised, otherwise those coefficients are not factorised. And
this variable is defined for the same reason as the variable Factoring Coef DE.

Section 6.2. Some Applications Page 29

• Laurent Puiseux Series: this is a boolean variable (equal to false by default) allowing the user
to decide whether he or she wants also Laurent series and Puiseux series or not. Indeed, if this
variable is true, then the series obtained as output can be a Laurent or Puiseux series, otherwise
outputs are formal power series.

• Info Level FPS: This is an integer variable (equal to 0 by default) representing the level of
information printed out during the execution of functions in the package. This variable can take
values from 0, 1, 2, ..., 5. The larger that variable is, the more informations are printed out during
the execution of functions.

Let us present some applications of our algorithm.

6.2 Some Applications

In this part, we present FPS of some functions we got using functions in our package.
Let us start by presenting FPS of some holonomic functions we got using the function HOLO FPS().

Section 6.2. Some Applications Page 30

Next, we present FPS of some functions having a rational derivative like arctan(x), x2 log(x2 + 2)
computed using the function RAT FPS().

We also present FPS of some functions using the general function FPS(). In this case, since we want
to have only formal power series, not Laurent or Puiseux series, the variable Laurent Puiseux Series

is set to false. Below are some results we obtain in this case.

Section 6.2. Some Applications Page 31

Let us now show some results of computation of Laurent and Puiseux series using the function HLP FPS()

and FPS(). First, using the function HLP FPS(), we get the outputs below.

Now setting the variable Laurent Puiseux Series to true, we can compute Laurent series and Puiseux
series using the function FPS() which in this case is able to compute power series of more functions
compared to the function HLP FPS(). Let us show some results we obtain in this case.

Having given numerous results we can get, using our package, let us move to some general remarks.

Section 6.3. General Remarks about our Package Page 32

6.3 General Remarks about our Package

In this part, we make some useful remarks for the user about functions in the package.

6.3.1 Remark. When the function HOLO FPS() is able to compute the FPS, then the expression it
returns is simpler than all the other expressions one gets using other functions like FPS() or RAT FPS().
For instance FPS(log(1 − x5), x) gives a very large expression of the FPS whereas HOLO FPS(log(1 −
x5), x) gives the following simple expression

∑∞
n=0−x5n+5

n+1 .

6.3.2 Remark. For many rational functions, the procedure for hypergeometric type functions works,
nevertheless there are also exceptions like the following functions (1 + x2)/(1 − x2), (1 + x4)/(1 −
x3), (1 + x4)/(1 + x3), for which this procedure fails. Of course those functions are managed well by
the procedure presented in Chapter 5 for rational functions.

6.3.3 Remark. Using the function HOLO FPS(), one can fail to get the FPS of a function f which
can be obtained using the function FPS() due to the fact that the function FPS() computes the FPS
of each summand in the expression and returns their sum. Further for a function f(x) of the form
f(x) = p(x)g(x) where p(x) is a polynomial, the function HOLO FPS() might be able to compute only
the FPS of g(x) but not the FPS of f(x), in this case the function FPS() will compute the FPS of f(x)
by doing the product of p(x) and the FPS of g(x).

6.3.4 Remark. In order to compute FPS of functions like f(x) = sin(x)
x which are not defined at 0 but

which can be extended at 0, the user needs to enable the computation of Laurent and Puiseux series
by setting the variable Laurent Puiseux Series to true. Indeed, in our implementation we did not
consider the limits of a function f and its derivatives at 0 since in some cases, the computation of such
limits can take a long time and slows down the program.

6.3.5 Remark. The function Holonomic DE() apart from its 3 main arguments can also take an
optional fourth argument. Indeed, the fourth argument should be a positive integer and represents the
lowest order of the HDE searched. If the fourth argument is less than MAX ORDER DERIVATIVE, then the
function Holonomic DE() looks for a HDE of order greater than the value of that argument and less
than MAX ORDER DERIVATIVE, otherwise the function looks only for a HDE of order exactly the value
of this argument. This optional argument can be very useful sometimes and can reduce the time of
computation. For instance if one guesses that the order of the HDE is greater than 10, then setting the
fourth argument to 10 will considerably reduce the time of computation. As illustration, the computation
of the IV-HDE of the function f(x) = sin(x)6 arcsin(x) without specification of the optional argument
takes around 8 minutes and 43 seconds to find a HDE of order 14 whereas by specifying the optional
argument to 14, we get the IV-HDE only after 1 minute and 48 seconds.

6.3.6 Remark. If the user wants to find the FPS of a complex function f(x), he or she must first set
the variable COMPLEX COEFF to true, otherwise the output will be only the real part of the solution and
therefore is incorrect.

6.3.7 Remark. In order to compute the FPS of a function f(x) at a point a, we define the function
Power Series(f, x, a) which takes the function f , its main variable x, the point a and returns the
FPS of f(x) at the point a. Indeed, knowing that the FPS of f(x) at a point a is equivalent to the
FPS of the function g(x) = f(x + a) at the point 0, this function computes the FPS of g(x) at 0
(through the functions HOLO FPS(), HLP FPS() or FPS()) and replaces x by x − a. Note also that
this function takes 2 optional arguments: the first one is the index of summation, and the second one

Section 6.3. General Remarks about our Package Page 33

indicates the function to use to compute the FPS of g(x). If the second optional argument is holo

(hlp) then, the function Power Series() uses the function HOLO FPS() (HLP FPS() respectively). If
the second argument is fps hlp then the variable Laurent Puiseux Series is set to true and the
function Power Series() uses the function FPS(), otherwise the variable Laurent Puiseux Series

is set to false and the function Power Series() uses the function FPS().
Remark that, for a function f(x), the function Power Series() can be able to compute the FPS at a
point a, but might not be able to compute the FPS at another point b different from a. The reason
is that a function f(x) can be of hypergeometric type at one point of development but fails to be of
hypergeometric type at another point.
Below is a snapshot of some results we got using the function Power Series().

6.3.8 Remark. The functions HOLO FPS(), HLP FPS(), RAT FPS() and FPS() can take an optional
third argument representing the index of summation in the FPS as shown in the snapshot below.

7. Conclusion and Perspectives

In this essay, the aim was the implementation in the CAS Maxima of the algorithm for computing formal
power series of hypergeometric functions and rational functions. This algorithm was presented in [3]
by Wolfram Koepf in 1992. We have presented and implemented those algorithmic procedures in the
CAS Maxima, and also considered the computation of Laurent series and Puiseux series. Based on
those procedures, we got nice results and were able to compute formal power series of a large family
of functions. However, each of those procedures is not fully satisfactory. Indeed, the procedure applied
for hypergeometric functions has a constraint, it might happen that the recurrence equation obtained
in the process is not of hypergeometric type and cannot be solved by the methods implemented in
the recurrence equation solver solve rec() of the computer algebra system Maxima. In this case,
the procedure fails and ends up with the recurrence equation instead of the formal power series. The
procedure used for rational functions has also a constraint. In fact, in this process, we need to compute
the full factorisation of the polynomial representing the denominator of the rational function over the field
of complex numbers C, though such full factorisation theoretically exists, there is no general procedure
to get it. Hence in some cases, the computation of such full factorisation is impossible in a computer
algebra system. This can be illustrated by the polynomial x7 + x5 + 4x2 + 67 for which such a full
factorisation is not available in the CAS Maxima. In those cases, the procedure for rational functions
fails. For further researchs, in order to improve the work we did, one may consider the implementation
in the CAS Maxima of the Petkovsek-van-Hoeij algorithm to solve our recurrence equations in order to
deal with recurrence equations which are not of hypergeometric type.

34

Acknowledgements

Firstly, I would like to thank the Lord to have given me the great opportunity to be part of the 2016/2017
Aims-Cameroon students batch.

Secondly, I am very grateful to Pr. Dr. Wolfram Koepf for having accepted to be my supervisor and for
all the help he provides me during my research period. I also thank Dr. Daniel Duviol Tcheutia for all
the assistance I received from him. Also I would like to specially thank Dr. Ferdinand Ngakeu who has
always believed in me and encouraged me.

Thirdly, I am very grateful to the founder of AIMS Pr. Neil Turok, to the Academic Director Pr. Mama
Foupouagnigni and the staff of Aims-Cameroon.

Finally a special thank to my father Mr. Simo Rene and my mother Mme. Tchuensu Josephine and my
brother and sisters for all the supports I have always received from them.

I want also to thank everyone who helped me in my study process.

35

References

[1] Bruce W Char. MAPLE Reference Manual. Watcom Publications, 1988.

[2] Robert Dodier. Maxima Manual. http://maxima.sourceforge.net/docs/manual/maxima.html, 2015.
Accessed: May 10, 2016.

[3] Wolfram Koepf. Power series in computer algebra. Journal of Symbolic Computation, 13(6):581–
603, 1992.

[4] Wolfram Koepf. Symbolic computation of formal power series with Macsyma. Proceedings of the

Workshop on Functional-Analytic Methods in Complex Analysis and Applications to Partial Differ-

ential Equations, Trieste, Italy, January 1993, Eds. W. Tutschke, A. S. Mshimba, World Scientific

Publishing Co., pages 306–328, 1995.

[5] Wolfram Koepf. Hypergeometric Summation. An Algorithmic Approach to Summation and Special

Function Identities. Springer Universitext. Springer, London, Second edition, 2014.

[6] Stephen Wolfram. The Mathematica Book, 5th Ed. 2003.

36

http://maxima.sourceforge.net/docs/manual/maxima.html

	Abstract
	Introduction
	Holonomic Differential Equation
	Illustration and Examples
	General Procedure and Implementation in Maxima
	Some Applications

	Conversion of a Holonomic Differential Equation to a Recurrence Equation
	Illustrative Examples
	General Procedure of Conversion and Implementation
	Some Applications

	Resolution of Recurrence Equations of Hypergeometric Type
	Illustrative Examples
	General Procedure of Resolution of IV-REs of Hypergeometric Type
	Some Applications

	Formal Power Series of Rational Functions
	Illustrative Examples
	General Procedure for Computing Formal Power Series of Rational Functions
	Some Applications

	The Formal Power Series Algorithm
	General Procedure for Computing Formal Power Series
	Some Applications
	General Remarks about our Package

	Conclusion and Perspectives
	Acknowledgements
	References

