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BBM-Characterization of Sobolev spaces

Part I:
Bourgain-Brezis-Mironescu characterization of

Sobolev spaces
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BBM-Characterization of Sobolev spaces

Motivation

In 2001, Bourgain-Brezis-Mironescu (BBM), motivated by the study ofthe asymptotic
behavior of the fractional Gagliardo-Nirenberg W s,p-norm when 1 < p <∞ is fixed and
s → 1−, 0 < s < 1, showed that

lim
s→1−

(1− s)

¨

ΩΩ

|u(x)− u(y)|p

|x − y |d+sp
dydx =

|Sd−1|
p

Kd,p

ˆ
Ω

|∇u(x)|pdx , u ∈ Lp(Ω). (1)

when Ω ⊂ Rd is an open bounded Lipschitz domain. Here, ∇u is he distributional
gradient of u and Kd,p is the universal constant,

Kd,p =

 
Sd−1
|w · e|pdσd−1(w) =

Γ
(
d
2

)
Γ
(
p+1
2

)
Γ
(
d+p
2

)
Γ
( 1

2

) , for some e ∈ Sd−1. (2)

Intuitively, the relation (1) makes sense since the fractional Sobolev space

W s,p(Ω) =
[
Lp(Ω),W 1,p(Ω)

]
s,p

is the interpolation space between Lp(Ω) and W 1,p(Ω).
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BBM-Characterization of Sobolev spaces

Motivation

Later, Mazy’a & Shaposhnikova, 2002, completed the asymptotic when s → 0+,

lim
s→0+

s

¨

Rd Rd

|u(x)− u(y)|p

|x − y |d+sp
dydx =

2|Sd−1|
p

ˆ
Rd

|u(x)|pdx , for u ∈
⋃

0<s<1

W s,p(Rd).

More generally, BBM proved that the relation (1) generalizes as follows

lim
ε→0+

¨

ΩΩ

|u(x)− u(y)|p

|x − y |p ρε(x − y)dydx = Kd,p

ˆ
Ω

|∇u(x)|pdx , u ∈ Lp(Ω). (3)

where (ρε)ε is an approximation of the unity, i.e., satisfies

ρε ≥ 0 is radial,
ˆ
Rd

ρε(h)dh = 1 and lim
ε→0

ˆ
|h|>δ
ρε(h)dh = 0 . (4)
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BBM-Characterization of Sobolev spaces

Motivation

Our main motivation here is two-fold: To extend the BBM result (3)

for unbounded domains with extension property;

for a general sequence approximating the unity.

To be more precise, if Ω ⊂ Rd is an extension domain(eventually unbounded) and (νε)ε is
a family of p-Lévy integrable radial functions νε : Rd → [0,∞] such that

ˆ
Rd

(1 ∧ |h|p)νε(h)dh = 1 and lim
ε→0

ˆ
|h|>δ

(1 ∧ |h|p)νε(h)dh = 0 , (5)

with min(1, |h|p) = 1 ∧ |h|p, then we also have

lim
ε→0+

¨

ΩΩ

|u(x)− u(y)|pνε(x − y)dydx = Kd,p

ˆ
Ω

|∇u(x)|pdx , u ∈ Lp(Ω). (6)
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BBM-Characterization of Sobolev spaces

Remark 1.

Consider the fractional kernel,

νε(h) = aε,d,p|h|−d−p+ε with aε,d,p =
ε(p − ε)

p|Sd−1|

then (νε)ε satisfies (5) but there is no family (ρε)ε satisfying (4) such that
νε(h) = |h|−pρε(h) for h 6= 0. This shows that the class (νε)ε is strictly lager than the
class (ρε)ε.

Lemma 1.

Assume Ω ⊂ Rd is open. 1 ≤ p <∞ then for all u ∈ C 1
c (Rd) then

lim
ε→0+

ˆ
Ω

|u(x)− u(y)|pνε(x − y)dy = Kd,p|∇u(x)|p, x ∈ Rd . (7)

The Lebesgue convergence dominated theorem implies.
Theorem 2.

Assume Ω ⊂ Rd is open and 1 ≤ p <∞ then for all u ∈ C 1
c (Rd) then

lim
ε→0+

¨

ΩΩ

|u(x)− u(y)|pνε(x − y)dydx = Kd,p

ˆ
Ω

|∇u(x)|pdx , u ∈ C 1
c (Rd). (8)
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BBM-Characterization of Sobolev spaces

Proof. Assume Ω 6= Rd , fix for 0 < δ < 1 ∧ dist(x , ∂Ω) so that Bδ(x) ⊂ Ω

lim
ε→0+

ˆ
Ω

|u(x)− u(y)|pνε(x − y)dy

= lim
ε→0+

ˆ
Bδ(x)

|u(x)− u(y)|pνε(x − y)dy

+ lim
ε→0+

ˆ

Ω∩|x−y|≥δ

|u(x)− u(y)|pνε(x − y)dy
[
≤ 2p‖u‖∞

ˆ

|h|≥δ

νε(h)dh→ 0
]

= lim
ε→0+

ˆ
Bδ(0)

|∇u(x) · h|pνε(h)dh,
[
u(x + h)− u(x) = ∇u(x) · h + 0(1)

]
= lim
ε→0+

|Sd−1|
ˆ δ

0
rd+d−1νε(r)dr

1
|Sd−1|

ˆ
Sd−1
|∇u(x) · w |pσd−1(w)dw

= lim
ε→0+

ˆ
Bδ(0)

1 ∧ |h|p|νε(h)dh︸ ︷︷ ︸
= 1−

´
|h|≥δ

1 ∧ |h|pνε(h)dh → 1,

 
Sd−1
|∇u(x) · w |pσd−1(w)dw = Kd,p|∇u(x)|p.

The case Ω = Rd follows by the same token, taking δ = 1.
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BBM-Characterization of Sobolev spaces

Theorem 3 (BBM, 2001// preprint: GF, 2020, Characterization of Sobolev spaces).

Assume Ω ⊂ Rd is open, 1 ≤ p <∞ and u ∈ Lp(Ω). If

Ap := lim inf
ε→0+

¨

ΩΩ

|u(x)− u(y)|pνε(x − y)dydx <∞ (9)

then

u ∈W 1,p(Ω) and Kd,p‖∇u‖pLp(Ω) ≤ Ap, for p 6= 1;

u ∈ BV (Ω) and K1,d |u|BV (Ω) ≤ A1, for p = 1.

Recall W 1,p(Ω) = {u ∈ Lp(Ω) : s.t. ∂xi u weak derivative in Lp(Ω)} and
W 1,1(Ω) ⊂ BV (Ω) and BV (Ω) stands for the space of bounded variations on Ω,

BV (Ω) = {u ∈ L1(Ω) : |u|BV (Ω) <∞}

where |u|BV (Ω) is the total variation of the Radon measure |∇u|(·)

|∇u|(Ω) = |u|BV (Ω) := sup
{ ˆ

Ω

u(x) div φ(x)dx : φ ∈ C∞c (Ω,Rd), ‖φ‖L∞(Ω) ≤ 1
}
.
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BBM-Characterization of Sobolev spaces

Warning! The converse of Theorem 3 is not true in general.

Example 4 (Counterexample.).

Consider Ω = (−1, 0) ∪ (0, 1) and put u(x) = − 1
2 if x ∈ (−1, 0) and u(x) = 1

2 if
x ∈ (0, 1). Clearly, u ∈W 1,p(Ω) for all 1 ≤ p <∞ with ∇u = 0. If 1 < p <∞ and
s ≥ 1/p then ‖u‖W s,p(Ω) =∞, i.e., for νε(h) ∼ ε|h|1+(1−ε)p, (ε = 1− s) we have

u ∈W 1,p(Ω) whereas Ap := lim inf
ε→0+

¨

ΩΩ

|u(x)− u(y)|pνε(x − y)dydx =∞. (10)

Remark 2.

The main reason is that, Ω = (−1, 0) ∪ (0, 1) is not a W 1,p-extension domain. Indeed,
assume u ∈W 1,p(R) is an extension of u defined. In particular, u ∈W 1,p(−1, 1) and
u = u on Ω. The distributional derivative of u on (−1, 1) is ∇u = δ0, the Dirac mass at
the origin. This contradicts the fact that u ∈W 1,p(R).
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BBM-Characterization of Sobolev spaces

Definition 5.

An open set Ω ⊂ Rd is called a W 1,p-extension (resp. BV -extension) domain if there
exists a linear operator E : W 1,p(Ω)→W 1,p(Rd) (resp. E : BV (Ω)→ BV (Rd)) and a
constant C := C(Ω, d) such that

Eu |Ω = u and ‖Eu‖W 1,p(Rd ) ≤ C‖u‖W 1,p(Ω) for all u ∈W 1,p(Ω)

(resp. Eu |Ω = u and ‖Eu‖BV (Rd ) ≤ C‖u‖BV (Ω) for all u ∈ BV (Ω)).

Remark 3.

I According to Piotr Hajłasz et al 2008, W 1,p-extension domain Ω is necessarily a d-set,
i.e., there c > 0 such that |Ω ∩ Br (x)| ≥ crd for all x ∈ Ω and 0 < r < 1. The Lebesgue
differentiation theorem implies |∂Ω| = 0 (∂Ω has zero Lebesgue measure). Therefore,

ˆ
∂Ω

|∇Eu|dx = 0. (11)

I As a complement, we will assume that a BV -extension domain Ω also satisfies the
boundary condition

|∇Eu|(∂Ω) =

ˆ
∂Ω

d|∇Eu| = 0. (12)
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BBM-Characterization of Sobolev spaces

Here is the converse of Theorem 3.

Theorem 6 (BBM, 2001// preprint: GF, 2020 ArXiv:2008.07631).

Let Ω ⊂ Rd be an extension domain. Let u ∈ Lp(Ω), 1 < p <∞ or u ∈W 1,1(Ω) then

lim
ε→0+

¨

ΩΩ

|u(x)− u(y)|pνε(x − y)dydx = Kd,p

ˆ
Ω

|∇u(x)|pdx . (13)

with the convention that ‖∇u‖Lp(Ω) =∞ if u 6∈W 1,p(Ω).

If p = 1, u ∈ BV (Ω) and |∇Eu|(∂Ω) = 0 then (Juan Dávila 2002)

lim
ε→0+

¨

ΩΩ

|u(x)− u(y)|νε(x − y)dydx = Kd,1

ˆ
Ω

d|∇u(x)| = Kd,1|u|BV (Ω). (14)
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BBM-Characterization of Sobolev spaces

Sketch of the proof.
I Assume u ∈W 1,p(Rd) then for all h ∈ Rd , one easily check that

ˆ
Rd

|u(x + h)− u(x)|pdx ≤ 2p(1 ∧ |h|p)‖u‖p
W 1,p(Rd )

, (15)

given that,
´
Rd (1 ∧ |h|p)νε(h)dh = 1, this implies

¨

Rd Rd

|u(x + h)−u(x)|pνε(h)dxdh ≤ 2p‖u‖p
W 1,p(Rd )

. (16)

I Assume u ∈W 1,p(Ω) and let ū ∈W 1,p(Rd) be an extension of u then (16) implies
¨

ΩΩ

|u(x)− u(y)|pνε(x − y)dxdy ≤
¨

Rd Rd

|ū(x + h)− ū(x)|pνε(h)dxdh

≤ 2p‖ū‖p
W 1,p(Rd )

≤ 2pC p‖u‖p
W 1,p(Ω)

.

I Now if u, v ∈W 1,p(Ω), we put

Uε(x , y) = |u(x)− u(y)|ν1/p
ε (x − y) and Vε(x , y) = |u(x)− u(y)|ν1/p

ε (x − y).
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BBM-Characterization of Sobolev spaces

The foregoing implies∣∣∣‖Uε‖Lp(Ω×Ω) − ‖Vε‖Lp(Ω×Ω)

∣∣∣ ≤ ‖Uε − Vε‖Lp(Ω×Ω) ≤ 2C‖u − v‖W 1,p(Ω). (17)

According to (17) it is sufficient to prove the result for u in a dense subset of W 1,p(Ω).

I Since Ω is an extension domain, C∞c (Rd) is dense in W 1,p(Ω). The case 1 < p <∞
or u ∈W 1,1(Ω) follows from Theorem 2.

I If p = 1 and u ∈ BV (Ω), similar argument can be applied by using the following
approximation result.

Theorem 7 (c.f. Evans & Gariepy, p.172 or Ambrosio, Fusco & Pallara, Theorem 3.9).

Let Ω ⊂ Rd be open. For every u ∈ BV (Ω), there exist functions (un)n in
BV (Ω) ∩ C∞(Ω) = W 1,1(Ω) ∩ C∞(Ω) such that

‖un − u‖L1(Ω)
n→∞−−−→ 0 and ‖∇un‖L1(Ω)

n→∞−−−→ |u|BV (Ω).

Warning! Theorem 7 does not say BV (Ω) ∩ C∞(Ω) is dense in BV (Ω).
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BBM-Characterization of Sobolev spaces

Theorem 8 (BBM, ’01 & Augusto Ponce, ’04 & GF, ’20, Asymptotic compactness).

Assume Ω ⊂ Rd is open, bounded and Lipschitz. Let the family (uε)ε such that

sup
ε>0

(
‖uε‖Lp(Ω) +

¨

ΩΩ

|uε(x)− uε(y)|pνε(x − y)dydx
)
<∞.

There is a subsequence (εn)n with εn → 0+ as n→∞ and a function u ∈ Lp(Ω) such that
‖uεn − u‖Lp(Ω)

n→∞−−−→ 0. Moreover, u ∈W 1,p(Ω) if 1 < p <∞ or u ∈ BV (Ω) if p = 1.

As a direct consequence of this we have.

Theorem 9 (Robust Poincaré inequality).

Assume Ω ⊂ Rd is open, bounded and Lipschitz. There exist C > 0 and ε0 > 0 such that

‖u −
ffl

Ω
u‖pLp(Ω ≤ C

¨

ΩΩ

|u(x)− u(y)|pνε(x − y)dxdy , for all u ∈ Lp(Ω) and ε ∈ (0, ε0).

Indeed, letting ε→ 0+ (using Theorem 6) implies the classical Poincaré inequality

‖u −
ffl

Ω
u‖pLp(Ω ≤ CKd,p

ˆ
Ω

|∇u(x)|pdx , for all u ∈ Lp(Ω). (18)

.
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Elliptic Integro-differential operator

Part II:
Convergence of IDEs with Neumann condition
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Elliptic Integro-differential operator

From now on, p = 2 and ε = 2− α ∈ (0, 2).

I Let (να)α∈(0,2) be a family of functions such that for every α, and δ > 0

να ≥ 0 is radial,
ˆ
Rd

(1 ∧ |h|2)να(h)dh = 1, lim
α→2

ˆ

|h|>δ

(1 ∧ |h|2)να(h)dh = 0 . (19)

I For symmetric kernels Jα : Rd ×Rd \ diag→ [0,∞], α ∈ (0, 2), we set the conditions:

(E) Elliptic condition: There exists a constant Λ ≥ 1 such that for every α ∈ (0, 2) and
all x , y ∈ Rd , with x 6= y

Λ−1να(x − y) ≤ Jα(x , y) ≤ Λνα(x − y). (E)

(I) For each α ∈ (0, 2) the kernel Jα is translation invariant, i.e., for every h ∈ Rd

Jα(x + h, y + h) = Jα(x , y). (I)

I Introduce the Lévy type Integro-differential operator Lα and Nα the nonlocal normal
derivative across Ω defined by

Lαu(x) = p.v .2
ˆ
Rd

(u(x)− u(y))Jα(x , y)dy , (x ∈ Rd) (20)

Nαu(x) = 2
ˆ

Ω

(u(x)− u(y))Jα(x , y)dy , (x ∈ Ωc). (21)
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Elliptic Integro-differential operator

I We define the symmetric matrix A(x) = (aij(x))1≤i,j≤d by

aij(x) = lim
α→2

ˆ
Bδ(0)

hihjJ
α(x , x + h)dh for x ∈ Rd and δ > 0. (22)

I The condition (E), implies that the matrix A(x) = (aij(x))1≤i,j≤d , is elliptic and,

d−1Λ−1|ξ|2 ≤ A(x)ξ · ξ ≤ d−1Λ|ξ|2 for every x , ξ ∈ Rd . (23)

I Under the condition (I), the matrix A is constant. In particular

• for Jα(x , y) = να(x − y) we have A(x) = 1
d

(δij)ij = 1
d
Id .

• for Jα(x , y) = Cd,α|x − y |−d−α we have A(x) = (δij)ij = Id and Lα = (−∆)α/2 is the
fractional Laplacian

(−∆)α/2u(x) = Cd,αp.v .

ˆ
Rd

(
u(x)− u(y)

)
|x − y |d+α

dy . (24)

here Cd,α � α(2− α) is a normalization constant.
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(Non)local Neumann problem

(Non)local Neumann problem
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(Non)local Neumann problem

I Local Green-Gauss formula: Assume Ω is Lipschitz bounded and A is any elliptic matrix.

−
ˆ

Ω

div(A(·)∇u)v dx =EA(u, v)−
ˆ
∂Ω

∂u

∂nA
v dσ(x) u, v ∈ C 2(Rd). (G0)

here ∂u(x)
∂nA

= A(x)∇u(x) · n(x) is the outer normal derivative of u on ∂Ω w.r.t. A and

EA(u, v) =

ˆ
Ω

A(x)∇u(x) · ∇v(x)dx . (25)

Definition 10 (weak solution to local Neumann problem).

Let f : Ω→ R and g : ∂Ω→ R be measurable. We say that u : Ω→ R is a weak solution
of the local Neumann problem

− div(A(·)∇u) = f in Ω and
∂u

∂nA
= g on ∂Ω, (N0)

if u ∈ H1(Ω) = W 1,2(Ω) and

EA(u, v) =

ˆ
Ω

f (x)v(x)dx +

ˆ
∂Ω

g(x)v(x)dσ(x), for all v ∈ H1(Ω) . (V0)

Taking v = 1, (V0) gives the compatibility condition
ˆ

Ω

f (x)dx +

ˆ
∂Ω

g(y)dy = 0. (C0)
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(Non)local Neumann problem

Nonlocal Neumann problem

I Nonlocal Green-Gauss formula:ˆ
Ω

Lαu(x)v(x)dx =Eα(u, v)−
ˆ

Ωc

Nαu(y)v(y)dy u, v ∈ C∞c (Rd). (Gα)

Recall that

Lαu(x) = p. v. 2
ˆ
Rd

(u(x)− u(y))Jα(x , y)dy , (x ∈ Rd) (26)

Nαu(x) = 2
ˆ

Ω

(u(x)− u(y))Jα(x , y)dy , (x ∈ Ωc) (27)

Eα(u, v) =

¨

(Ωc×Ωc )c

(u(x)− u(y))(v(x)− v(y))Jα(x , y)dxdy . (28)

Note that (Ωc × Ωc)c = (Rd ×Rd) \ (Ωc × Ωc).
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(Non)local Neumann problem

I Define

Vνα(Ω|Rd) =
{
u : Rd → R meas. : u |Ω∈ L2(Ω) and Eα(u, u) <∞

}
. (29)

If να has full support then Vνα(Ω|Rd) is a Hilbert space under the norm

‖u‖2Vνα (Ω|Rd ) = ‖u‖2L2(Ω) +

¨

(Ωc×Ωc )c

(u(x)− u(y))2να(x − y)dxdy . (30)

Definition 11 (Dipierro et al 2017: weak solution to nonlocal Neumann problem).

Let fα : Ω→ R and gα : Ωc → R be measurable. We say that uα : Rd → R is a weak
solution of the nonlocal Neumann problem

Lαuα = fα in Ω and Nαuα = gα on Ωc (Nα)

if u ∈ Vνα(Ω|Rd) and

Eα(uα, v) =

ˆ
Ω

fα(x)v(x)dx +

ˆ
Ωc

gα(y)v(y)dy , for all v ∈ Vνα(Ω|Rd) . (Vα)

Taking v = 1, (Vα) becomes the so called compatibility condition
ˆ

Ω

fα(x)dx +

ˆ
Ωc

gα(y)dy = 0. (Cα)

(TU-Dresden) April 1, 2021 21 / 33



(Non)local Neumann problem

Well-posedness of (non)local Neumann problem

Theorem 12 (Local Neumann problem).

Assume Ω is bounded Lipschitz, f ∈ L2(Ω) and g ∈ L2(∂Ω).

I There exists a unique u ∈ H1(Ω)⊥ =
{
v ∈ H1(Ω) :

ffl
Ω
v = 0

}
satisfying the modified

Neumann problem

EA(u, v) =

ˆ
Ω

f (x)v(x)dx +

ˆ
∂Ω

g(y)v(y)dσ(y) for all v ∈ H1(Ω)⊥ . (V ′0)

I If f and g are compatible, solutions to local Neumann problem (V0) are of the form

w = u + c ∈ H1(Ω), c ∈ R.

I Moreover, all w ′s satisfy the weak regularity estimate,

‖w −
ffl

Ω
w‖Vν (Ω|Rd ) ≤ C

(
‖f ‖L2(Ω) + ‖g‖L2(∂Ω)

)
. (31)

with the constant C := C(d ,Ω) > 0.
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(Non)local Neumann problem

Theorem 13 (Nonlocal Neumann problem).

Assume να is almost decreasing, i.e., να(|x |) ≤ κνα(|y |) if |x | ≥ |y | for some κ > 0,
fα ∈ L2(Ω) and gα ∈ L2(Ωc , ν−1

α,Ω), here we let

να,Ω(x) = essinfy∈Ω να(x − y).

I There exists a unique uα ∈ Vνα(Ω|Rd)⊥ =
{
v ∈ Vνα(Ω|Rd) :

ffl
Ω
v = 0

}
satisfying

the modified Neumann problem

Eα(uα, v) =

ˆ
Ω

fα(x)v(x)dx +

ˆ
Ωc

gα(y)v(y)dy for all v ∈ Vνα(Ω|Rd)⊥ . (V ′α)

I If fα and gα are compatible, solutions to nonlocal Neumann problem (Vα) exist and
are of the form

wα = uα + c ∈ Vνα(Ω|Rd) c ∈ R.

I Moreover, all w ′αs satisfy the weak regularity estimate

‖wα −
ffl

Ω
wα‖Vνα (Ω|Rd ) ≤ C

(
‖fα‖L2(Ω) + ‖gα‖L2(Ωc ,ν−1

α,Ω
)

)
. (32)

with the constant C := C(d ,Ω, να) > 0.
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From nonlocal to local
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From nonlocal to local

Analogous analysis to Theorem 6 lead to the following.

Theorem 14 (Bourgain-Brezis-Mironescu type result).

Let D ⊂ Rd be an extension domain. For all u ∈ L2(D) we have

lim
α→2

¨

DD

(u(x)− u(y))2Jα(x , y)dxdy =

ˆ

D

A(x)∇u(x) · ∇v(x)dx ,

lim
α→2

¨

DD

(u(x)− u(y))2να(x − y)dxdy = Kd,2

ˆ

D

|∇u(x)|2dx Kd,2 =
1
d
.

Direct consequence: If Ω ⊂ Rd is bounded Lipschitz: so that Rd , Ω and Ωc are extension
domains,

lim
α→2

¨

(Ωc×Ωc )c

(u(x)− u(y))2Jα(x , y)dxdy

= lim
α→2

[ ¨

Rd Rd

−
¨

ΩcΩc

]
(u(x)− u(y))2Jα(x , y)dxdy

=
[ ˆ

Rd

−
ˆ

Ωc

]
A(x)∇u(x) · ∇v(x)dx =

ˆ
Ω

A(x)∇u(x) · ∇v(x)dx .
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From nonlocal to local

Some spin-offs:
I Therefore, for all u ∈ H1(Rd),

lim
α→2
Eα(u, u) = EA(u, u). (33)

I If (Jα)α satisfies thee translation invariant condition (I), one can show

lim
α→2

Lαϕ(x) = − div(A(x)∇ϕ)(x) ϕ ∈ C 2
b (Rd). (34)

I The above implies that for v ∈ H1(Rd), gα = Nαϕ and g = ∂ϕ
∂nA

,ˆ
∂Ω

g(x)v(x)dσ(x) = lim
α→2

ˆ
Ωc

gα(y)v(y)dy . (35)

Indeed, combining the local and the nonlocal Green-Gauss formula givesˆ
∂Ω

∂ϕ(x)

∂nA
v(x)dσ(x) = EA(ϕ, v) +

ˆ
Ω

div(A(x)∇ϕ(x))v(x)dx

= lim
α→2
Eα(ϕ, u)−

ˆ
Ω

Lαϕ(x)v(x)dx

= lim
α→2

ˆ
Ωc

Nαϕ(y)v(y)dy gα = Nαϕ.

I Taking Jα(x , y) = Cd,α|x − y |−d−α gives Lα = (−∆)α/2, − div(A∇) = −∆ and

∂ϕ(x)

∂nA
=
∂ϕ(x)

∂n
= ∇ϕ(x) · n(x).
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From nonlocal to local

I (Gα)→ (G0) as α→ 2, i.e., letting α→ 2 in the nonlocal Green-Gauss formula (Gα)ˆ
Ω

Lαu(x)v(x)dx = Eα(u, v)−
ˆ

Ωc

Nαu(y)v(y)dy (36)

one recovers the local local Green-Gauss formula (G0)

−
ˆ

Ω

div(A(x)∇u(x))v(x)dx = EA(u, v)−
ˆ
∂Ω

∂u(x)

∂nA
v(x)dσ(x) (37)

Furthermore we have the following more general convergence of the energies forms.

Theorem 15 (GF/Kassmann/Voigt ’19: Mosco convergence).

Define Hνα(Ω) = {u ∈ L2(Ω) : EαΩ (u, u) <∞} where

EαΩ (u, u) =

¨

ΩΩ

(u(x)− u(y))2Jα(x , y)dxdy (38)

Then, as α→ 2, both nonlocal forms

(Eα(·, ·),Vνα(Ω|Rd))α, (EαΩ (·, ·),Hνα(Ω))α
Mosco converge−−−−−−−−−−−−→ (EA(·, ·),H1(Ω)).

I Note that Mosco convergence implies the Gamma convergence.
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From nonlocal to local

Theorem 16 (Convergence of Neumann problem).

Let Ω be bounded Lipschitz. Assume (fα)α ⇀ f (weakly) in L2(Ω) as α→ 2. Define

gα = Nαϕ and g =
∂ϕ

∂nA
, with ϕ ∈ C 2

b (Rd).

Assume the elliptic condition (E), and uα ∈ Vνα(Ω|Rd)⊥ satisfies (weak solution) the
nonlocal Neumann problem

Lαuα = fα on Ω and Nαuα = gα on Ωc . (39)

Let u ∈ H1(Ω)⊥ be the unique weak solution in H1(Ω)⊥ of the Neumann problem

− div(A(·)∇u) = f on Ω and
∂u

∂nA
= g on ∂Ω. (40)

Assume that the condition (I) holds or that gα = g = 0 then (uα)α converges to u in
L2(Ω), i.e., ‖uα − u‖L2(Ω)

α→2−−−→ 0. Moreover, we have the weak convergence,

Eα(uα, v)
α→2−−−→ EA(u, v) for all v ∈ H1(Rd). (41)
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From nonlocal to local

Sketch of the proof.
IThe Robust Poincaré inequality (Theorem 9) implies that, for 0 < α∗ < 2 and C > 0,

sup
α∈(α∗,2)

[
‖uα‖2L2(Ω) + Eα(uα, uα)

]
≤ C (42)

I By the compactness (Theorem 8) there exists αj → 2 and u ∈ H1(Ω)⊥ such that

‖uαj − u‖L2(Ω)
j→∞−−−→ 0

I In fact, for fixed v ∈ H1(Rd) one can further establish the weak convergence

Eαj (uαj , v)
αj→2
−−−→ EA(u, v). (43)

I We have previously shown that
ˆ
∂Ω

g(x)v(x)dσ(x) = lim
αj→2

ˆ
Ωc

gαj (y)v(y)dy . (44)

I By assumption fα ⇀ f in L2(Ω).
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From nonlocal to local

Hence, for u ∈ H1(Rd) we have
ˆ

Ω

f (x)v(x)dσ(x) +

ˆ
∂Ω

g(x)v(x)dσ(x) = lim
αj→2

ˆ
Ω

fαj (x)v(x)d +

ˆ
Ωc

gαj (y)v(y)dy

= lim
αj→2

Eαj (uαj , v) = EA(u, v).

It turns out that

EA(u, v) =

ˆ
Ω

f (x)v(x)dσ(x) +

ˆ
∂Ω

g(x)v(x)dσ(x).

that is, since A is elliptic and Ω is Lipschitz, u ∈ H1(Ω)⊥ is the unique weak solution of
the local Neumann problem. Thus the convergence of the entire sequence holds.
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From nonlocal to local

Theorem 17 (Convergence of Neumann eigenpairs).

Assume that (µα, φα) ∈ R×L2(Ω) is a normalized Neumann eigenpairs of the operator
Lα, i.e. ‖φα‖L2(Ω) = 1 and we have

Lαφα,= µαφα on Ω and Nαφα = 0 on Ωc . (45)

Then there is (µ, φ) ∈ R×L2(Ω) such that, up to a subsequence,

µα
α→2−−−→ µ and ‖φα − φ‖L2(Ω)

α→2−−−→ 0. (46)

Moreover, (µ, φ) is a normalized Neumann eigenpairs of the operator − div(A∇), i.e.

− div(A∇)φ,= µφ on Ω and
∂φ

∂nA
= 0 on ∂Ω. (47)

Remark:
1 Theorem 16 and Theorem 17 remain true when the Neumann condition is replaced

with the Dirichlet condition.
2 For Lα = (−∆)α/2 or Jα(x , y) = d−1να(x − y), we have − div(A∇) = −∆

Lαuα = fα
α→2−−−→ −∆u = f , (convergence of problems)

Lαφα = λαφα
α→2−−−→ −∆φ = λφ, (convergence of eigen-problems).
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Thank You For Your Attention.
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