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Part I
Bourgain-Brezis-Mironescu characterization of
Sobolev spaces
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Motivation

In 2001, Bourgain-Brezis-Mironescu (BBM), motivated by the study ofthe asymptotic
behavior of the fractional Gagliardo-Nirenberg W*P-norm when 1 < p < oo is fixed and
s —=17,0< s <1, showed that

. d—1
lim (1—s //‘”(X |L:1+sp dydx = 15 |Kd,p/|vU X)Pdx, welP(Q). (1)

s—>1*

when Q C R? is an open bounded Lipschitz domain. Here, Vu is he distributional
gradient of u and Ky, is the universal constant,

r(2)r(es)

2 2

r2ri)

Kap = ][ |w - elPdog_1(w) = for some e € S77 1. (2)
sd—1

Intuitively, the relation (1) makes sense since the fractional Sobolev space
WHR(Q) = [17(Q), WHP(Q)],

is the interpolation space between LP(Q) and W'?(Q).
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Motivation

Later, Mazy'a & Shaposhnikova, 2002, completed the asymptotic when s — 07,

H | —U(y |p 2‘Sd 1‘ p sp d
Sin(r)us// pER B2~ 2V qydx = | X)Pdx,  forue [ J WP(RY).

0<s<1

More generally, BBM proved that the relation (1) generalizes as follows

lim // u() = u y)|pps(x — y)dydx = Kd,;,/Q [Vu(x)|Pdx, wveL’(Q). (3)

e—0t |x —yl|p
where (p<)< is an approximation of the unity, i.e., satisfies

pe > 0 s radial, / ps(h)dh=1 and lim / pe(h)dh=0. (4)
JRd |

e—0 h|>6
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Motivation

Our main motivation here is two-fold: To extend the BBM result (3)

@ for unbounded domains with extension property;

o for a general sequence approximating the unity.

To be more precise, if Q C R? is an extension domain(eventually unbounded) and (v.). is
a family of p-Lévy integrable radial functions v. : R — [0, oc] such that

/ (LA |AP)ve(h)dh =1 and lim (L A|hP)ve(h)dh =0, (5)
R =0 J|p>s

with min(1, |h|?) = 1 A |h|P, then we also have

i 1609 =0t yx =, [ 19t we @ 0
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. condoceomernd Sl oo [
Remark 1.

Consider the fractional kernel,

=i . e(p—e
ve() = aca b 4P with acap = S 0)

then (v:). satisfies (5) but there is no family (p.)- satisfying (4) such that

ve(h) = |h|=Ppe(h) for h # 0. This shows that the class (v.). is strictly lager than the

class (pe)e.
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Remark 1.

Consider the fractional kernel,

=i . e(p—e
ve() = aca b 4P with acap = S 0)

then (v:). satisfies (5) but there is no family (p.)- satisfying (4) such that

ve(h) = |h|=Ppe(h) for h # 0. This shows that the class (v.). is strictly lager than the

class (pe)e.

Lemma 1.

Assume Q C R is open. 1 < p < oo then for all u € C(RY) then

im / Ju(x) = u(y)[Pre(x — y)dy = Kapl Vu(x)P, x € RY. (7)
Q

e—07t

The Lebesgue convergence dominated theorem imblies.
Theorem 2.

Assume Q C R? is open and 1 < p < oo then for all u € C(R?) then

EET”’Q/Q/ |u(x) — u(y)|Pre(x — y)dydx = Kd,p/Q |Vu(x)|Pdx, ue CIHRY). (8)
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Proof. Assume Q # RY, fix for 0 < § < 1 A dist(x, dQ) so that Bs(x) C Q
I|m /| (x) — u(Y)|Pre(x — y)dy
e—0*t

= lim /Bs(x) lu(x) — u(y)|Pve(x — y)dy

#Jim [l = ) Pree =)y [£20ull [ v(p)dh )

anix-y|>5 [h] >3
= lim / [Vu(x) - h|Pve(h)dh, [u(x + h) — u(x) = Vu(x) - h+ 0(1)]
e—0t B;s(0)
s
= 6ILn(';+ S 1\/0 rd+dflua(r)dr@ /gdi1 [Vu(x) - wlfog_1(w)dw
= lim / 1A |h|P|ve(h)dh ][ [Vu(x) - wlPog—1(w)dw = Kq,5|Vu(x)|".
e—0t B;(0) §d—1
=1— [ 1A |hlPve(h)dh — 1,
|h[>6

The case Q = R follows by the same token, taking § = 1.
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e BBMiCRMRCRSHeRSESSRelS SRS
Theorem 3 (BBM, 2001// preprint: GF, 2020, Characterization of Sobolev spaces).

Assume Q C RY is open, 1 < p < oo and u € LP(Q). If
Ay = Iim(i)rlf// |u(x) — u(y)|Pre(x — y)dydx < oo (9)
e—
ol

then
e uc WHP(Q) and Kd,,||Vu||U,(Q < Ap, forp#1;

o uc BV(Q) and K17d|u‘Bv(Q) < A, forp=1.

Recall WP(Q) = {u € LP(Q) : s.t. Ox,u weak derivative in LP(Q)} and
Wh(Q) C BV(Q) and BV() stands for the space of bounded variations on Q,

BV(Q) = {u € [X(Q) : |u|sv) < oo}

where |u|gy(q) is the total variation of the Radon measure |Vu|(-)
IVul(Q) = |uleve) ;:sup{/ u(x) div$(x)dx : ¢ € C(QR), ¢l <1}
Ja

(TUzDredzny



Warning! The converse of Theorem 3 is not true in general.

Example 4 (Counterexample.).

Consider Q = (—1,0) U (0,1) and put u(x) = —1 if x € (—1,0) and u(x) = 3 if
x € (0,1). Clearly, u € WP(Q) for all 1 < p < co with Vu=10. If 1 < p < 0o and
s > 1/p then |lul|ws.p@) = oo, i.e., for v.(h) ~ e|h*+1=2)P (¢ =1 — 5) we have

uc Wl’p(Q) whereas p = I|m |nf//| — u(y VE(X - y)dydx = 0. (10)

Remark 2.

The main reason is that, Q = (—1,0) U (0, 1) is not a W' P-extension domain. Indeed,
assume T € WP(R) is an extension of u defined. In particular, m € W*P(—1,1) and

T = u on . The distributional derivative of T on (—1,1) is VU = do, the Dirac mass at
the origin. This contradicts the fact that 1 € W'*(R).
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Definition 5.

An open set Q C R? is called a W'P-extension (resp. BV-extension) domain if there
exists a linear operator E : WYP(Q) — WYP(RY) (resp. E : BV(Q) — BV(RY)) and a
constant C := C(£2, d) such that
Eulo=u and  ||Eullwipme) < Cllullwieg — forall ue Wh?(Q)
(resp. Eulo=u and |Eull gymey < Cllullave for all u e BV(Q)).

Remark 3.

» According to Piotr Hajtasz et al 2008, W*P-extension domain §Q is necessarily a d-set,
i.e., there ¢ > 0 such that |Q N B,(x)| > cr? for all x € Q and 0 < r < 1. The Lebesgue
differentiation theorem implies |02] = 0 (092 has zero Lebesgue measure). Therefore,

/8Q |V Euldx = 0. (11)

» As a complement, we will assume that a BV -extension domain Q also satisfies the
boundary condition

IV Eu|(9Q) = /aﬂ d|VEu| = 0. (12)
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Here is the converse of Theorem 3.

Theorem 6 (BBM, 2001// preprint: GF, 2020 ArXiv:2008.07631).

Let Q C RY be an extension domain. Let u € LP(Q), 1 < p < oo or u € WH(Q) then

Jim ] 1) = )P x = y)ayeds = Kap [ [Vu()P (13)

with the convention that || Vu||i»q) = oo if u ¢ W*P(Q).

Ifp=1, ue BV(Q) and |VEu|(02) = 0 then (Juan Davila 2002)

i, [ 14 = u) et = y)dydx = Ko [ AVu()] = Kaalulaviay. (19
e— Q
QQ
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Sketch of the proof.
» Assume u € WHP(R) then for all h € RY, one easily check that

[+ B) = a7 < 2N APl ey (15)
given that, [L,(1 A |h|P)v=(h)dh = 1, this implies

(16)

//|u(x + h)=u()|Pve(W)dxdh < 2°[[u]2,n o

RY R
> Assume u € WP(Q) and let 7 € W'P(R?) be an extension of u then (16) implies

//\u(x = u(y)[Pre(x — y)dxdy < // |G(x + h) — i(x)|Pve(h)dxdh

R4 RY

<27 2°C7|ully

u”Wlde) = Wlp
» Now if u,v € WHP(Q), we put

U=(x,y) = lu(x) = u(y)|v2""(x = y) and Ve(x, y) = Ju(x) = u(y)[v2?(x = y).
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S
The foregoing implies
[ Uelleriaxa) = [ Vellr@xa)| < U = Vellraxa) < 2C|u = vliwapq)-  (17)

According to (17) it is sufficient to prove the result for u in a dense subset of W'*(Q).

» Since Q is an extension domain, C2°(R?) is dense in W*P(Q). Thecase 1 < p < oo
or u € WH(Q) follows from Theorem 2.

» If p=1and u € BV(Q), similar argument can be applied by using the following
approximation result.

Theorem 7 (c.f. Evans & Gariepy, p.172 or Ambrosio, Fusco & Pallara, Theorem 3.9).

Let Q C RY be open. For every u € BV(RQ), there exist functions (un)n in
BV(Q) N C=(Q) = WH(Q) N C>=(Q) such that

||Un — UHLl(Q) IH_OO) 0 and ||VU,,HL1(Q) ,H—OO> |U|Bv(Q).

Warning! Theorem 7 does not say BV (2) N C*°(R) is dense in BV(Q).

(TUzDredzn



Theorem 8 (BBM, '01 & Augusto Ponce, '04 & GF, '20, Asymptotic compactness).

Assume Q C R? is open, bounded and Lipschitz. Let the family (u.). such that

sup (luellusey + [ 1) = we(y)Prctx = y)dyee) < oo
QQ

There is a subsequence (en)n with e, — 0% as n — oo and a function u € LP(Q) such that
l|te, — ullipi) ——> 0. Moreover, u € W*P(Q) if1 < p < oo oru € BV(Q) if p=1.

As a direct consequence of this we have.

Theorem 9 (Robust Poincaré inequality).

Assume Q C R? is open, bounded and Lipschitz. There exist C > 0 and o > 0 such that

lu— foullfe@q < C//| — u(y)|Pve(x — y)dxdy, for all u € L°(Q2) and € € (0,e0).

Indeed, letting ¢ — 0T (using Theorem 6) implies the classical Poincaré inequality

— foulllr@ < CKd,p/ [Vu(x)|Pdx, for all ue LP(Q). (18)
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Part Il
Convergence of IDEs with Neumann condition
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From now on, p=2and e =2 — «a € (0,2).
» Let (Va)ac(o,2) be a family of functions such that for every o, and 6 > 0
. . ' 2 _ . 2 _
Vo > 0 is radial, /Rd(l A h]")va(h)dh =1, Oléli’r;l2 /(1 A h]%)va(h)dh =0. (19)
[h]>6

» For symmetric kernels J% : RY x RY\ diag — [0, 00], @ € (0,2), we set the conditions:

(E) Elliptic condition: There exists a constant A > 1 such that for every « € (0,2) and
all x,y € R?, with x # y

AN va(x = y) < J%(x,y) < Ava(x = y). (E)
(1) For each a € (0,2) the kernel J* is translation invariant, i.e., for every h € R?
S (x+hy +h) = J"(xy). M

» Introduce the Lévy type Integro-differential operator L, and N, the nonlocal normal
derivative across 2 defined by

Lau(x) = p.v.2 / (0) — u)) I (<. V)dy, (x €RY) (20)
Nau(x) =2 / (ulx) = u)) I (ey)dy,  (x € Q). (21)
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» We define the symmetric matrix A(x) = (a;(x))1<ij<da by
aj(x) = lim / hihjJ*(x,x + h)dh for x € R? and § > 0. (22)
@72 JB5(0)
» The condition (E), implies that the matrix A(x) = (a;(x))1<i,j<d, is elliptic and,
dIATHEP S A(x)E-€ < dTMAJE)P for every x, £ € RY. (23)
» Under the condition (1), the matrix A is constant. In particular

e for J%(x,y) = va(x — y) we have A(x) = 1(8;); = L14.

o for J%(x,y) = Caalx — y| 797" we have A(x) = (6;); = ls and L, = (—A)*/2 is the
fractional Laplacian

(—A)*?u(x) = cd,ap.v./ W) — ), (24)

rd X —yldre

here Cy.o < a(2 — @) is a normalization constant.
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(Non)local Neumann problem
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» Local Green-Gauss formula: Assume Q is Lipschitz bounded and A is any elliptic matrix.

/ div(A(-)Vu)v dx =E*(u, v)— ﬂv do(x) u,v e C*(RY). (Go)
Jaq Ona
here GB”T(:) = A(x)Vu(x) - n(x) is the outer normal derivative of u on 9Q w.r.t. A and

ENu,v) = / A(x)Vu(x) - Vv(x)dx. (25)
Q
Definition 10 (weak solution to local Neumann problem).

Let f: Q2 — R and g : 9Q — R be measurable. We say that u: Q — R is a weak solution
of the local Neumann problem

—div(A(-)Vu)=f in Q@ and —— =g on 99, (No)
if ue HY(Q) = W'?(Q) and
ENu,v) = /Q f(x)v(x)dx + /BQ g(x)v(x)do(x), forall ve HY(Q). (Vo)
Taking v =1, (Vo) gives the compatibility condition

[ fegax+ [ ety =o. (Go)
JQ JOQ




Nonlocal Neumann problem

» Nonlocal Green-Gauss formula:

/Lau(x)v(x)dx =£%(u, v)f/ Nau(y)v(y)dy u,v € CZ(RY). (Ga)
Q Qc
Recall that
Lou(x) = p.v.2 /Rd(u(x) U)o y)dy,  (x €RY) (26)
Nou(x) = 2 / (W) — u) I (oy)dy,  (x € Q) (27)
// (u(x) — u(y))(V(x) = v(¥))J (x, y)dxdy. (28)
(e xQ°)

Note that (2° x Q°)° = (R? x RY) \ (Q° x Q).
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» Define
V.. (QRY) = {u ‘RY 5 R meas. : u o€ L*(Q) and £%(u, u) < oo} (29)

If v has full support then V,_(QR?) is a Hilbert space under the norm

[[ul

o = lulfe + [ (@00~ u)Prale - yiaxdy. (30
(Qe xQc)e

Definition 11 (Dipierro et al 2017: weak solution to nonlocal Neumann problem).

Let £, : Q — R and go : Q° — R be measurable. We say that us : RY — R is a weak
solution of the nonlocal Neumann problem

Louoy =f, in Q and Nyuso=g. on Q° (Na)
if ue V,, (QRY) and

E*(Ua, V) :/Qfa(x)v(x)dx—i—'/ﬂc ga(y)v(y)dy, forall veV, (QRY). (Vo)

Taking v = 1, (V.) becomes the so called compatibility condition

| ftax+ [ gtnay =o. (C)
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Well-posedness of (non)local Neumann problem
Theorem 12 (Local Neumann problem).

Assume Q is bounded Lipschitz, f € L*(Q) and g € L*(99).
> There exists a unique u € H'(Q)" = {v € H'(Q) : f,v = 0} satisfying the modified
Neumann problem

ENu,v) = / f(x)v(x)dx +/ gly)v(y)da(y) forall ve H' (Q)". (Vo)
Ja ho)
» If f and g are compatible, solutions to local Neumann problem (V) are of the form

w=u+cec H(Q), ceR

» Moreover, all w's satisfy the weak regularity estimate,

w = £y wlv, i ey < C(I1Flliz) + lgllizomy ) - (31)

with the constant C := C(d,Q2) > 0.
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Theorem 13 (Nonlocal Neumann problem).

Assume v, is almost decreasing, i.e., vo(|x|) < kva(|y|) if |x| > |y| for some k > 0,
f. € L3(Q) and g. € L*(QF, y;}l), here we let

Va,0(x) = essinfyca va(x — y).

> There exists a unique u., € V., (QRY)" = {v € V., (QR’): f,v =0} satisfying
the modified Neumann problem

£%(ua, v) = /glzf,,(x)v(x)dx—&— / ga(y)v(y)dy forall ve V. (QR)S. (V1)

c

» If f, and g, are compatible, solutions to nonlocal Neumann problem (V..) exist and

are of the form
W = Uy + C E VV(Y(QHRd) c eR.

» Moreover, all ws satisfy the weak regularity estimate

Iwee = fo walv,, @iy < € (11falize) + Igallize,1)) - (32)

with the constant C := C(d,Q,vq) > 0.
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From nonlocal to local
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Analogous analysis to Theorem 6 lead to the following.
Theorem 14 (Bourgain-Brezis-Mironescu type result).

Let D C RY be an extension domain. For all u € L?(D) we have
a—2

lim // — u(y))?J*(x,y)dxdy = /A(X)Vu(x) - Vv(x)dx,

lim // ) — u(y))*val(x — y)dxdy = Kdz/\Vu(x dx K2 = l
a—2 d

Direct consequence: If Q C R? is bounded Lipschitz: so that RY, Q and Q° are extension
domains,

lim // (u(x) — u(y))?J*(x, y)dxdy

a—2
(QexQc)e
= tim [ [ =[] T — at)se (e yyaxy
a—
RA RI QcQce

- [ /R - / C]A(X)vu(x)-w(x)dx: /Q A(X)Vu(x) - Vv(x)dx
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Some spin-offs:
» Therefore, for all u € H*(R?),

H e __ oA
olélﬂjzg (u, u) = E%(u, u). (33)
» If (J*)q satisfies thee translation invariant condition (1), one can show

lim Lap(x) = —div(A()Ve)(x) € CR(R?). (34)

» The above implies that for v € H*(R?), go = Nuyp and g = gn":,

[ Gov)aot = tim, | gu(n)vir)ay. (3)
JoQ

a—2

Indeed, combining the local and the nonlocal Green-Gauss formula gives

9¢(x) v(x)do(x) = E4(g, v) + / div(A(x)Ve(x))v(x)dx

aa Ona

= ||m EX /Lacp x)v(x)dx

= lim an(y)V(y)dy 8o = Nayp.
@ Jac
» Taking J%(x,y) = Caalx — y| 797 gives Lo, = (—A)*/?, —div(AV) = —A and
9p(x) _ Op(x) _
o~ on = V(x) - n(x).
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. e bl oo el [
» (G.) = (Go) as a — 2, i.e., letting a — 2 in the nonlocal Green-Gauss formula (G,)
[ Louvt)ax = £°(uv) = | Nouly)vi)ay (36)
Q c

one recovers the local local Green-Gauss formula (Go)

‘A“““ﬂvwnwme:s%wn— 9u()

80 anA

v(x)do(x) 37)

Furthermore we have the following more general convergence of the energies forms.

Theorem 15 (GF/Kassmann/Voigt '19: Mosco convergence).
Define H,,(Q) = {u € L*(Q) : £ (u, u) < 0o} where

(u, u) // — u(y))?J*(x, y)dxdy (38)

Then, as o« — 2, both nonlocal forms

Mosco converge
—>

(E7C,)s Voo (ARN))a, (E5(5), Hoa (R))a (€4, ), HH Q).

» Note that Mosco convergence implies the Gamma convergence.
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Theorem 16 (Convergence of Neumann problem)

Let Q be bounded Lipschitz. Assume (f,)o — f (weakly) in L*(Q) as a — 2. Define

8o =Nap and g= 8—(‘0, with ¢ € CZ(R?).
anA

Assume the elliptic condition (E), and u, € V,, (Q|RY)* satisfies (weak solution) the
nonlocal Neumann problem

Loua = fo

on Q and MNous,=g. on Q°. (39)
Let u € H*(Q)" be the unique weak solution in H*(Q)* of the Neumann problem
—div(A(:)Vu)=f on Q and — =g on 0. (40)
BnA
Assume that the condition (1) holds or that g, =
L2(Q), ie.,

= g =0 then (ua)a converges to u in
— u]l2(q) 272, 0. Moreover, we have the weak convergence,
E%ua,v) 222 EMu,v)  for all v € HY(RY). (41)
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Sketch of the proof.
» The Robust Poincaré inequality (Theorem 9) implies that, for 0 < a, <2 and C > 0,

sup [HuaHfz(Q) + YU, ua)} <cC (42)

ac(ax,2)
» By the compactness (Theorem 8) there exists aj — 2 and v € H*(Q)* such that
llue; — ulli2(q) =0

> In fact, for fixed v € H*(R?) one can further establish the weak convergence

EY9(tay, v) i ENu, v). (43)
» We have previously shown that
[ gbvdo(a) = fim, [ o, (r)v(x)dy. (44)
Joaq =2 Jqe

» By assumption f, — f in L*(Q).
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Hence, for u € H*(RY) we have

/Qf(x)v(x)da(xw/mg(x)v( x)da(x) = lim /f (v /Cgaj(y)v(y)dy

= lim_&%(uq;, v) = EMNu, v).
oj—2

It turns out that
ENu,v) = /Q f(x)v(x)do(x) + /an g(x)v(x)do(x).

that is, since A is elliptic and Q is Lipschitz, u € H*(Q)™" is the unique weak solution of
the local Neumann problem. Thus the convergence of the entire sequence holds.
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Theorem 17 (Convergence of Neumann eigenpairs).

Assume that (o, da) € R xL*(Q) is a normalized Neumann eigenpairs of the operator
Lo, i€ |[¢all2(@ =1 and we have

Loto,= plade on Q and Nogo =0 on Q°. (45)
Then there is (11, ) € R x L?(Q) such that, up to a subsequence,

a—2 a—2
po === p and |¢a — ¢li2@ < 0. (46)

Moreover, (1, ¢) is a normalized Neumann eigenpairs of the operator — div(AV), i.e.

—div(AV)¢,= u¢p on Q and §T¢ =0 on 9. (47)
A

Remark:

@ Theorem 16 and Theorem 17 remain true when the Neumann condition is replaced
with the Dirichlet condition.

@ For Lo = (—A)*/2 or J¥(x,y) = d *va(x — y), we have —div(AV) = —A
a—2

Lotuo = fo —= —Au =", (convergence of problems)

Loda = Aada 222 A= A, (convergence of eigen-problems).
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Thank You For Your Attention.
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