MANONMANIAM SUNDARANAR UNIVERSITY

DIRECTORATE OF DISTANCE & CONTINUING EDUCATION
TIRUNELVELI 627012, TAMIL NADU

M.Sc. MATHEMATICS -1 YEAR

DKM11 - ADVANCED ABSTRACT ALGEBRA
(From the academic year 2016-17)

Most Student friendly University - Strive to Study and Learn to Excel

For more information visit: http://www.msuniv.ac.in




M.Sc. MATHEMATICS - | YEAR

DKM11 : ADVANCED ABSTRACT ALGEBRA
SYLLABUS

Unit 1 :

Groups — A counting principle — Normal subgroups and Quotient groups -
homomorphism — isomorphism — Cayley’s theorem — permutation groups. [Sections 2.6-2.10]
Unit 11 :

Another counting principle — Sylow’s Theorems — Direct products. [Sections 3.11-3.13]
Unit I :

Rings — homomorphism — Ideals and quotient rings — Field of quotients of an integral
domain — Polynomial rings — Polynomial rings over rational field. [Sections 3.4-3.10]
unit IV :

Vector spaces — Linear transformation and bases — Algebra of linear transformations —
Characteristic roots — [Sections 4.1,4.2,6.1,6.2,6.3&6.8] — canonical form - triangular form —
trace & tanspose.

Unit V:

Extension fields — roots of polynomials — more about roots. [Sections 5.1,5.3 & 5.5]

Text :
Topics in Algebra (Second Edition) By I.N. Herstein — Willey Indian Edition.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
1



1. UNIT I

Groups

Definition 1.1 Group: A non-empty set of elements G is said to form
a group if in G there is defined a binary operation, called the product and
denoted by (-) such that

1. a,be G=a-be G (closure axiom),
2. a,b,ce G=a-(b-c)=(a-b)-c (Associative axiom),

3. there exists an element e € G such that a-e = e-a = a,Va € G
(Existence of identity),

4. Ya € G there exists an element a=' € G such thata-a ' =a '-a=e
(Existence of inverse).

Definition 1.2 Abelian group: A group G is said to abelian (or commu-
tative) if Va,b € G = a-b=">-a.

Remark 1.3 A group which is not abelian is called a non-abelian group.

Example 1.4 Let G = {0,£1,42,...}. Definea-b=a+0b. Then G is an
abelian group. i.e., (Z,+) is an abilian group.

Example 1.5 Let G = {1,—1}. Then G is a group under multiplication.
Here G is an abelian group of order 2.

Example 1.6 Let S5 = {x1,x2, 23}, consider
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G is a non-abelian group under composition of function and it is a symmet-
ric group of order 3, and denoted by S3.0(S3) = 3! = 6.
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Example 1.7 Let S be a non-empty the set having finite number of ele-
ments then A(s), the set of all permutations of S (i.e. the set of all 1 — 1,
onto functions from S onto itself). So, it is a non-abelian group under the
composition of function.

Example 1.8 Let
a b
GZ{(C d> la,b,c,d € R and ad — be # 0}

Then G is an infinite non-abelian group under matriz multiplication.

Lemma 1.9 If G is a group, then
1. the identity element of G is unique,
2. every element a € G has unique inverse in G,
3. forany a € G,(a)7! =a,

4. foralla,b€ G, (ab)~t =b"1.a" 1.

Definition 1.10 subgroup: A non-empty subset H of a group G is said to
be subgroup of G, if under the product G, H itself form a group.

Example 1.11 1. (2Z,+) is a subgroup of (z,4+),
2. (3Z,+) is a subgroup of (Z,+),
3. In general, (nZ,+) is a subgroup of (Z,+),
4. H={1,-1} is a subgroup of G={1,-1,i,-i} under usual multiplication.

Remark 1.12 If H is a subgroup of G, and G is a subgroup of K then H
s a subgroup of K.

Lemma 1.13 A non-empty subset H of the group G is a subgroup of G iff

1. a,be H=abe H

2. acH=a'eH

Lemma 1.14 If H is a non-empty finite subset of a group G and H is
closed under multiplication then H is a subgroup of G.

Example 1.15 Let S be any non-empty set. Then A(s) is a group under
composition of mapping. Let xo € S. Let H(xg) = {¢ € A(s)|d(x0) = x0}.
Then H(xq) is a subgroup of A(s).



Example 1.16 S = {x1,z9,23} : A(s) = s3 [ H(zy) = {e,v.¢}
H(x1) ={¢ € A(s)/¢(x1) = 21} H(zy) = {e, .0}
A(s) = {e,0,¥,9.0, ., 9%} H(zs) = {e, ¢}/

Here, H(x1), H(z2) and H(x3) are subgroups of Ss
Remark 1.17 H(z1) N H(x2) = H(x2) N H(xz) = H(xz) N H(z1) = {e}.

Definition 1.18 Cyclic Group: Let G be any group, a € G. Let (a) =

{a'/ie 2z} ={..a72a"t,a% at,a?...}. Then (a) is called as cyclic subgroup

generated by a. If (a) = G for some a € G then G is said to be a cyclic
group.

Example 1.19 Consider G = {1,—1,i,—i}, let a =1i. Then {(a) = G, G is
cyclic.

Example 1.20 Let G be the group of all real number addition (R,+) and
let H be the set of all integers under addition. Then H is a subgroup of G.

Example 1.21 Let

G= {(i Z) la,b,c,d € R and ad — bc # 0}is a group under multiplication

H:{GﬁZ)m@deZ}

K:{G QMGR}

Then H is a subgroup of G and K is a subgroup of H.

Example 1.22 Let G be a group of all non-zero complex number,(i.e.) G =
C ={a+1ib, both a and b are not zero} under multiplication. Let H =
{a+ibla® + b2 =1} = {z € C| |2| = 1}. Then H is a subgroup of G.

Definition 1.23 Let G be a group, H be a subgroup of G; for a,b € G we
say a is congruent to b mod H ,written as a = b(modH) if ab~' € H.

Lemma 1.24 The relation’ =" is an equivalence relation.

Definition 1.25 Right Cosets: If H is a subgroup of G, a € G then
Ha = {halh € H}. Ha is called a right cosets of H in G.

Example 1.26 Let G = {J12,®}, H = {0,4,8}. Then Distinct right cosets
of HinG are HH® 1, H®2, H 3.

Lemma 1.27 For alla € G,Ha = {z € Gla = z(mod H)}
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Lemma 1.28 There is a 1 —1 correspondence between any two right cosets
of H in G.

Theorem 1.29 Lagrange’s Theorem: If G is a finite group and H is a
subgroup of G, then O(H) is the divisor of O(G), converse of the Lagrange’s
theorem need not be true.

Example 1.30 1. LetG={1,—-1,i,—i},H = {i,—1}. Then O(H)/O(G)
but H is not a subgroup of G.

2. Let G - S3 - {67p17p27p37p47p5}7 H = {p_ 17p2}- Then O(H)/O(G)
but H is not a subgroup of G.

Definition 1.31 Index: If H is a subgroup of G, the index of H in G is
the number of distinct right cosets of H in G. It is denoted by iq(H).

Remark 1.32 ig(H) = %

Example 1.33 Let G = {Z12,®12}; H = {0,4,8}. Then ic(H) = 4 =

12/3 = S

Definition 1.34 If G is a group and a € G. The order of a (period of a)
is the least positive integer m such that a™ = e. If no such integer exists,
we say that a is of infinite order.

Example 1.35 Let G ={1,—-1,1,—i}
la=-1=ad*=(-1)?=1= 0(a) =2
2.a=i=a'=i'=1= O(a) = 4.

Example 1.36 In (212,@), 0[2] € Z19

now, O([2]) = 6 {~- [2]° = [2] + [2] + [2] + [2] + [2] + [2] = 0}

O[3] = 4; O([6]) = 2.

Example 1.37 Let (Z,+), e=0. Then 1 € Z is of infinite order.

Corollary 1.38 If G is a finite group and a € G, then O(a) divides O(G).

Corollary 1.39 If G is finite and a € G, then a©(&) = e.

Definition 1.40 Euler function ¢(n): ¢(1) = 1,¢(n) = number of posi-
tive integers less than n and relatively prime to n forn > 1.

o(8) =4 (.0 1,3,5,7 are relatively prime to 8),$(5) = 4,¢(7) = 6,¢(10) =
4,6(15) =17.



Corollary 1.41 If n is a positive integer and a is relatively prime to n
((a,n) = 1), then a®™ = 1(mod n).

Corollary 1.42 (i) If P is a finite prime number and a is any integer than
a? = a(mod p)
(ii) If G is a finite group of prime order then G is cyclic.

Counting principle: Let H,K be any two subgroups of a group G. Let
HK ={hk/h € H,K € k}.

Example 1.43 Consider the group G = S3 = {e, ¢,1,¢ -, - ¢,0?}. Let
H = {€,¢} and K = {€,¢¢} Then HK = {€€a€(¢¢)v¢€a¢(¢¢)} =
{e;o -, 0,0}, Here HK is not a subgroup of G. Because, it is not closed
under (). (¢-,¢ € HK but (¢p-v)-¢ =¢*> ¢ HK)(i.e.) H and K are the
subgroups of G but HK 1is not the subgroups of G. Since O(HK) does not
divides O(G), by Lagrange’s Theorem, HK need not be a subgroup of G.

Lemma 1.44 HK is a subgroup of G iff HK = KH.

Corollary 1.45 If H and K are subgroups of an abelian group G, then HK
is a subgroup of G.

Theorem 1.46 If H and K are finite subgroups of orders O(H) and O(K)

then O(HK) = %

Corollary 1.47 Suppose H and K are the subgroup of a group G and order
of H is greater than \/O(G) (i.e.) O(H) > \/O(G). Then HN K # {e}

(non-trivial).
Normal Subgroups and Quotient groups:

Definition 1.48 A subgroup N of a group G is said to be a normal subgroup
of G if for every g € G and n € N,gng~! € N.

Result 1.49 N is a normal subgroup of G < gNg~' = N.

Result 1.50 A subgroup N of a group G is a normal subgroup of G <
every left cosets of N in G is a right cosets of N in G.

Result 1.51 A subgroup N of a group G is a normal subgroup of G < the
product of any two right cosets of N in G is again a right cosets of N in G.

Theorem 1.52 If G is a group and N is a normal subgroup of G, then
G/N = {Nala € G}. Let X = Na,Y = Nb € G/N. Define X -Y =
Na - Nb = Nab. Under this product (-), G/N is a group which is called a
quotient group (or) a factor group of G/N
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Example 1.53 Let G = (Z12,®12) and N = {0,4, 8}.
Then G ={N @0, N®1,N®2, N P 3}.

Lemma 1.54 O(G/N) = %

Homomorphism:

Definition 1.55 A mapping ¢ from a group G into a group G is said to be
a homomorphism if for all a,b € G, ¢(ab) = ¢(a) - P(b).

Example 1.56 1. Let G be any group. Define ¢ : G — G by ¢(x) =
e VY € G, where e is the identity element of G. Then ¢ is a homo-
morphism of G into G. Let x,y € G = zy € G, ¢(x) = e, ¢(y) =
e, plzy) =e=e-e=d(x) oy).

2. Let G be a group. Define ¢ : G — G by ¢(x) =z Vo € G. Then ¢ is a
homomorphism. Let a,b € G = ab € G,¢(a) = a;p(b) = b, p(a-b) =
ab=a-b=¢(a)-¢(b) Va,b e G.

3. Let G be a group of all real numbers under addition and let G be group
of non-zero real numbers with a product being ordinary multiplication
of real numbers. (i.e.) G = (R,+);G = (R—{0},-). Define¢p: G — G
by ¢(a) = 2*. Then ¢ is a homomorphism. Let a,b € G = a+b € G.
Now, ¢(a+ b) =20+ =20.25 = ¢(a) - ¢(b) Ya,b € G.

4. Let G =83 = {e,¢,%, 69,9 §,4%} and G = {e, ¢}. Define f:G —
G by f(¢' - ¥7) =9 fle) =e fl¢) =¢; f(¥) =e flo-¢) =
o; f(-9) = f(ov?) = ¢; f(¥?) = e. Clearly, f is a homomorphism.
Let w = ¢' o,y = ¢" . flzy) = f(¢TT - pIT5) = ¢ = ' - ¢ =
f(@" 47) - f(¢" ¢%) = f(x) - f(y)-

5. Let G be the group of non-zero real numbers under multiplication. Let

G = ({1,-1},")/(i.e.) G = (R —{0},")]. Define ¢:G — G by

b(z) = {1 if x is positive

—1 if x is negative

(a) Let x,y € G = = and y are positive and ¢(z) = 1;¢(y) =1 = xy
is positive. Then ¢p(xy) =1=1-1=¢(z) - d(y),

(b) = and y are negative = ¢(x) = —1;¢(y) = —1 = xy is positive.
Then ¢(xy) =1 =—1-—1=¢(x) - ¢(y),

(¢) x is positive and y is negative = ¢(x) =1 and ¢(y) = —1 = xy

is negative. Then ¢(zy) =—-1=1-—-1=¢(x) - P(y),

(d) x is negative and y is positive = ¢(z) = —1 and ¢(y)

is negative. Then ¢(zy) = —1=—1-1= ¢(x) - ¢(y).

1= 2y



6. Let G be a group of integers under addition,(i.e.) G = (z,+) and
G be the group of integers under addition modulo n. (ie.) G =
(Zp,®n). Define ¢ : G — G by ¢(x)=Remainder of x on division
by n = r(mod n). Clearly, ¢ is a homomorphism.

7. Let G be a group of positive real number under multiplication and G
be the group of all real numbers under addition. Define ¢ : G — G
by ¢(x) = logipx. Let z,y € G. Then ¢(zy) = logiory = logipx +
logioy = ¢(x) + ¢(y). Then, ¢ is a homomorphism. (. the operation
on the RHS in G is infact addition).

Theorem 1.57 Suppose G is a group, N a normal subgroup of G; define a
mapping ¢ : G — G/N by ¢(x) = Nx VYo € G. Then ¢ is a homomorphism
of G onto G/N.

Proof: Let z,y € G. Then ¢(z) = Nz, ¢(y) = Ny. Now, ¢(ry) = Nxy =
Nz - Ny = ¢(x) - ¢(y). Hence, ¢ is a homomorphism. Let X € G/N, then
X = Nz,z € G. Then ¢(x) = Nz = X. Therefore ¢ is onto. Thus, ¢ is a
homomorphism of G onto G/N.

Remark 1.58 [t is true that a homomorphism need not be 1 — 1.

Definition 1.59 If ¢ is a homomorphism of G x G, the kernal of ¢ (Ky),
defined by Ky = {x € G|¢(x) = €,e is the identity element of G}. Clearly
Ky is a subset of G.

Example 1.60 1. Define ¢ : G — G by ¢(x) = e Vo € G. Then Ky =

{z € Glp(x) = e} =G.

2. Define ¢ : G — G by ¢(x) = x Vo € G. Then Ky = {z € G|p(z) =
T} =e.

3. Define ¢ : G — G by ¢(a) = 2% Va € G. Then K, = {a € G|¢(a) =
29} = {0}.

4. Define f: G — G by f(¢' ¥') = ¢'. Then Ky = {¢ € G|f(¢' ¥') =
¢'} = {e, ¥, 9}

5. Define ¢ : G — G by

b(z) = {1 if x is positive

—1 if x is negative.

Then Ky = {z € G|¢(x) = 1 = e,if x is positive } =set of all positive
numbers in G.

6. Define ¢ : G — G by ¢(z) = logipz. Then Ky = {z € Glo(z) =
logipz} = {1}.
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Lemma 1.61 If ¢ is a homomorphism of G x G,then

1. ¢(e),the unit element in G,

2. ¢(z~1) = (¢(x))~1,Vz € G.

Proof: 1. Let z € G,¢(x) € G. Now, ¢(x)-e = ¢(x) = ¢(x-e) =
¢(x) - ¢p(e) = ¢(e) =e (By LCL)

2. By (1), we have ¢p(e) =€ = € = ¢(e) = ¢(z-271) = ¢(z) - p(z7!) =
p(z7h) = [p(z)]

Remark 1.62 Since e is the kernal of any homoomorphism, Ky is not
empty.

Lemma 1.63 If ¢ is the homoomorphism of G into G with kernal K, then
K is a normal subgroup of G.

Proof: Let z,y € K. Then ¢(z) =€, ¢(y) = e. Now, ¢(xy) = ¢(z) - p(y) =
ece=e=>ayc K ... (i).

Now,¢(x~1) = [¢p(z)]7! (by (2) of Lemma @[B1) ¢p(z7!) = (e )1 =e=
T EK (ii).

By (i) and (ii), K is a subgroup of G. Let g € G and k € K, ¢(k) = e. Now,
o(gkg™") = d(g) o(k) ¢(g7") = ¢(9) o(k) [¢(9)]™" = ¢(9) € [d(g)] " =
(6(9) [¢(9)] ! = ¢(gkg™) =€ = gkg~! € K,Vg € G,k € K. Therefore
K is a normal subgroup of G.

Lemma 1.64 If ¢ is a homomorphism of G onto G with kernal K ,then the
set of all inverse images of g € G under ¢ in G is group by K,, where x is
any particular inverse image of g in G.

Proof: We have to prove K, = {¢(g),7 € G|¢p(z) =g} Ify e K, = y =
ke k € K. (SlncekGK ¢(k) = e) Now, ¢(y) = ¢p(kx) = ¢p(k)-p(x) =e-g
g =1y € ¢ 1(g), Therefore kx C{p=(g)}.cervv.... (i)

Does all the elements of K, are in the collection of inverse images of G
whenever exists? Let us check can there be any other. Suppose that
Z=G369=(2) =g = 6@ = 6(2) = 6(x) = 6(2) - [p(x)] "} =
e=¢2) oz ) =e=9¢(Zar)=e=Zar'ec K= 7ZcKr=
{671 (9)} C kg (ii)

from (i) and (ii), k. = {¢~(9)}.

Result 1.65 Let ¢ : G — G be a (function) homomorphism. Ky = {e} iff
¢isl—1.

Proof: Suppose ¢pis 1—1. Let z,y € G. Let v € K4 = ¢(x) = € = ¢(e) [By
Lemma OBI(1)] = ¢(z) = ¢(e) = x =€ [. ¢ is 1 —1]. Conversely suppose
that K, = {e}. To prove: ¢ is 1—1. Suppose, ¢(z) = ¢(y) = ¢(z)[d(y)] " =
€= o) (p(y™')) =e= ¢(xy™t) = é [ ¢ is homomorphism] = zy~! €
Ky={e}=ayl=e=>az=y=>¢is1-1.



Definition 1.66 A homomorphism ¢ : G — G is said to be an isomorphism

if 6 is 1-1.
Remark 1.67 ¢ : G — G is an isomorphism < K4 = {e}.

Definition 1.68 Two groups G,G* are said to be isomorphic if there is an
isomorphism of G onto G*. It is denoted by G = G*. [(i.e.) ¢ : G — G*, ¢

is 1 — 1, onto and homomorphism if G = G*].

Result 1.69 Isomorphic =’ is an equivalence relation.
Proof:

1. Let ig : G — G define by ig(z) = x Vo € G, is a identity function
on G. Clearly identity function is 1 — 1, onto and homomorphism. So
G = [ is reflexive.

2. Now, let G 2 G* and f : G — G* be an isomorphism.
= fis 1 — 1, onto and homomorphism.
= f~1:G* = Gisalso 1-1 and onto. [since f(a) = (b) = f~1(b) = d]
Now, let =*, y* € G*.
Let f~1(z*) =2 and f~1(y*) = .
= f(z) = 2* and f(y) =y
f(zy) = f(2)f(y) = 2"y"
fHary") = xy = @) N (y).
. f~1 is homomorphism.
-, f~1is 1 — 1,onto and homomorphism.
= G* = G and hence symmetric.

3. Now let G 2 G* and G* =2 G** with f : G —» G" and g : G* — G**.
Hence f and g are bijections and go f : G — G™** is also a bijection.

{. Let z,y € G.

= (go f)(@) = (g0 f)y)
Now let z,y € G. = g(f(z)) = 9(f(y))
Then (go f)(zy) = g(f(xy)) = flx)=f(y) [ gin1-1]
=g(f(z)f(y)) (. f is homomorphism) =z =y (. fis1—1)
= glf(@)] glf ()] s.gofisalsol—1
=(go f)(=)(go f)(y) g(y) = z (" g is onto)
. go fis isomorphism. f(z) = y(f is onto)

go f(z) = g[f(z)]

=g(y) = 2.

o.go fis onto.}
= G = G** = transitive. Thus ' &’ is an equivalence relation.

Corollary 1.70 A homomorphism ¢ : G into G with kernal Ky is an iso-
morphism iff Ky = {e}.
Proof: Suppose ¢ : G — G is an isomorphism with kernal K.
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To prove: K4 = {e}

Let v € K.
= ¢(z) = €= ¢(e)
=xr=ce

= K4 = {e} [Since ¢ is 1 —1].

Conversely suppose ¢ : G — G is a homomorphism with kernal Ky = {e}.
To prove: ¢ is an isomorphism. It is enough to prove that ¢ is 1 — 1.
Suppose ¢(z) = ¢(y)

= 6(@)[o(y)] " = e

= ¢(@)lo(y) " =

= oy ) =e

= xy ! = e = 2 =y. Therefore ¢ is 1 — 1.

Theorem 1.71 Let ¢ be a homomorphism of G onto G with kernal K.
Then G/K = G.

Proof: Given: ¢ : G — G is an onto homomorphism and Ky=K={x¢€
G|¢(x) = €, identity in G}. Define a function o : G — G/K by o(y) = K,
and ¢ : G/K — G by ¥(Kg) = ¢(g). To prove:

1. 1 is well defined: Suppose, Kg= K¢ = g€ K¢ = g=kg',k e K =

o(g) = o(kg') = o(k) ¢(g') = ed(g') = d(g') = V(Kg) = ¥(Kg).
Therefore v is well defined.

2. ¢ is onto: Let g € G. " ¢ : G — G is onto, there exists an element
g € G such that ¢(g) = g = ¥(Kg) = g (i.e.) Every element g € G
has inverse K¢ under 1. .". ¢ is onto.

3. ¢ is a homomorphism: Let z = Kg and y = K¢’ € G/K. Now,

U(zy) = ¥(Kg-Kg') = ¢¥(Kgg') = ¢(gg") (by defn) =¢(g) ¢(g')[ ¢ is
homomorphism|=v(kg) ¥ (kg') = ¥(x)¥(y). .. ¥ is a homomorphism.

4. ¢ is 1—1: To prove: 9 is 1 —1. It is enough to prove that Ky, = {e} =
{z € G/KY(z) = e} ={z = Kg,9 € GlY(Kg) = e} = {g € Glo(g) =
ef={g9€Glg=et={e}=¢is1-1 Thus¢:G/K - Gis1-1,
onto homomorphism. Hence G/K = G.

Remark 1.72 The above theorem tells that a group can be expected to arise
from the homomorphic image of the general group must be expressible in the
form of G/K where K is normal in G. (i.e.) For any normal subgroup N of
G, G/N is a homomorphic image of G. Thus there is a 1—1 correspondence
between homomorphic images of G and normal subgroups of G.

Definition 1.73 Simple: A group G is said to be simple if it has no non-
trivial normal subgroups.
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Theorem 1.74 Cauchy’s Theorem for Abelian Groups:

Suppose G is a finite abelian group and p/O(G), where p is a prime number.
Then there is an element a # e € G such that aP? = e.

Proof: We have to prove this theorem by induction over order of G [O(G)].
The theorem is clearly true for a group having single element. Assume that
the theorem is true for all abelian groups having fewer elements than G.
case(i)If G has no subgroup H # {e}. Claim that G must be a cyclic group
of prime order. Consider an element a € G,a # {e}. Take H = (a). Then
H is a subgroup of G and H # {e}. Therefore By hypothesis, H = G = (a).
= G = (a), since G has no improper subgroup. Therefore G is a cyclic
group. Any cyclic group is isomorphic to (Z,+) or (Z,,®). Since G is
finite, G = Z,,, for some n. Claim that n is prime. Suppose not, (i.e) n is
composite. Let n = pg,1 < p < n,1 < ¢ < n where p and ¢ are primer.
Now the subgroup generated by a, (i.e) (aP) is a proper subgroup of G of
order G. (i.e) G has a proper subgroup which is not equal to {e}, which is
a contradiction. Therefore our assumption is wrong. Therefore n is prime.
Hence G is a cyclic group of prime order. Then G has p — 1 elements. By a
corollary to Lagrange’s theorem a? = a®(@) = ¢ and a # e.

case(ii) Suppose G has a improper subgroup N # {e}

subcase:(a)

If p/O(N)

Since O(N) < O(G) and N is abelian, by induction hypothesis there is an
element b € N,b # e such that b» = e.[.- p/O(N) and N is abelian and
O(N) < O(G) By induction hypothesis] b € N C G = b € G. Thus there
exists an element b € G such that b” = e and b # {e}.

subcase:(b)

Suppose G has a proper subgroup N # {e} and p does not divides O(N).
Since G is a abelian and N is a normal subgroup of G, G/N is a group. [’

subgroup of an abelian group is normal]. Moreover, O(G/N) = %, since

p/O(G) and p does not divides O(N), p divides 8((16\7;)) [If not,(i.e) if p does

not divides 8((16\’;)) = p does not divides O(G/N) and p/O(N) = p does not
divides O(G), which is a contradiction]. (i.e) p/O(G/N) and O(G/N) <
O(G). Therefore by induction hypothesis there exists and element z €
G/N,z # N such that 2P = N............ (1)

wx € G/N,x = N, Where b € G and N = N.. By (1), 2? = N =
(N =N = N =N [ Ho=HoacH =WeNandbd¢ N
= ")OWN) =¢ [ ac Ga%% = ¢ = POWN) = ¢ = HBOWNP = ¢, Let

bOW) = ¢. Therefore & =e,c € N C G.

claim that ¢ # e

Suppose ¢ = e.

= 0N = = NpOWN) = Ne=N = NoOWNV) =N = Nb=N=be N
=< to b ¢ N. Hence, ¢ # e. Thus there exists an element ¢ € G,c # e
such that ¢? = e. Hence, the theorem.
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Theorem 1.75 Sylow’s theorem for finite abelian Groups: If G is an
abelian group of order, O(G) and p is a prime number such that p®/O(G)
and p®Tt does not divides O(G). Then G has a subgroup of order p®.
Proof: If a = 0, then the subgroup {e} satisfies the conclusion of the result.
Suppose a # 0. [p® = p° = 1/0(G),p*** = 2! does not divides O(G)].
Then p/O(G), and G is abelian. [." p/p*/O(G) = p/O(G)]. Therefore by
Cauchy’s theorem for finite abelian group there exists an element a # e
satisfying a? = e. Let S = {z € G|aP" = e, for some integer n}. - e € G
and e?" = e, e € S. Therefore S is non-empty. a # e,a? = e = b = e =
a€S=S5+#{e}.

Claim(i) S is a subgroup of G

Let 2,y € S = 2" = e and y*" = e for some intega n,m. Now (zy)P"" =
PP = (aP) L (yPT) = e e = e = a2y € S. Therefore S is a
subgroup of G ['." S is finite]. Hence, the Claim(i).

Claim:(ii) O(S) =p?,0 < B < «

Suppose ¢ # p and ¢/O(S). Therefore by Cauchy’s theorem, there exists
an element ¢ € S, ¢ # e such that ¢? = e. ". ¢ € S there exists an integer
n > O such that ¢®" = e. Also, (p”,q) = 1. Therefore integer A and u such
that Ap"™ + ug = 1. Now, ¢ = ¢! = MN"THa = N . ctd = (P" )N . ()M =
el et =e-e = c=e =<« to the fact that ¢ # e. Thus there exists no
prime number other than p which divides O(S). -.- S is a subgroup of G, by
Lagranges theorem O(S)/O(G). Let O(S) = p?, for some integer 3, then
we get < . Suppose, S < a. Consider the abelian group (G/S). Since
B < a,and O(G/S) = G2, p/O(G/S)

[ p*/O(G) = O(G) = kp
oOS)=p’.B<a,a—B>0,a—B=~v>0

O(G/S) = O(G)/O(S) = kp®/p’ = kp*~F = kp?

p/kp” = p/O(G/S)]

"S5 is a normal subgroup of G and G is abelian, G/S is a group.

By Cauchy’s theorem for finite abelian group there exists an element Sx €
G/S,Sx # S such that (sz)P" =S = SaP" = § = 2" € S[a € G,a%@) =
el = @")°0) = ¢ = @) =e = 27" = ¢, n+p > 0, integer
=z €8S =8Sr==Saec H< Ha = H| =<«to St # S. Therefore our
assumption is wrong. (i.e) 8 < a. Therefore § = a. .. O(S) = p® = p°.
Hence,G has a subgroup S such that O(S) = p®

|

Q

Corollary 1.76 If G is an abelian group of O(G) and p®/O(G), p**1 does
not divides O(G) then there is a unique subgroup of G of order p®.(p sylow
subgroup)

Proof: Suppose S and T are two subgroups of order p* where p*/O(G)
and p®*! does not divides O(G)

Suppose S # T,0(5) = p*, O(T) = p*. Now O(ST) = O(S)O(T)/O(S N
T)=pp*/O(SNT) =p**/O(SNT).-S#Tand SNT C S,0(SNT) <
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O(S) =p~. (ie) O(SNT) < p*. Therefore O(ST) = p7,y > . " G is
abelian, ST = T'S. Therefore ST is a subgroup of GG, by Lagrange’s Theo-
rem O(ST)/O(G). (i.e) p’/O(G),y > a = p*"1/O(G) =<« to p**! does
not divides O(G). This contradition shows that S = T. Therefore there
exists a unique subgroup of GG of order p“

Lemma 1.77 Let ¢ be a homomorphism of G onto G with kernal K. For
H a subgroup of G, let H be defined by H = {x € G|¢(x) € H}. Then

(i) H is a subgroup of G

(ii) H contains K and

(iii) if H is normal in G then H is normal in G. Moreover this association
sets up a 1 — 1 mapping from the set of all subgroup of G onto the set of all
subgroups of G which contains K.

Proof: Let 2,y € H. Then ¢(z),¢(y) € H. Now, ¢(zy) = ¢(z) - ¢(y) € H

[- H is a subgroup of G]. Therefore ¢(zy) € H.......... (i)
By definition, zy € H. ¢(z~') = [¢(z)]"" [ ¢ is homomorphism]=
#(z71) € H. Therefore 71 € H (by definition).......... (ii). By (i) and

(ii), H is a subgroup of G

To prove: H D K

Let 1 € K = ¢(x) =é € G [ H is a subgroup of G] = ¢(z) =e € H [
identity is unique in G] = = € H (by definition) .. K ¢ H

To prove: H is normal in G

Given:H is normal in G. Let ¢ € G and h € H. Therefore ¢(g) € G
and ¢(h) € H (by definition) and ¢ is onto map. Since H is normal in G,
o(9)p(R)p(g~ ') € H. (i.e) p(ghg™') € H = ghg~' € H. Therefore H is
normal G. Hence given a subgroup H of G, we have a subgroup of H of G
such that H D K.

Conversely, suppose that L is a subgroup of G and L D K. Let L = {z €
G|Z = ¢(z),z € L}. Claim that L is a subgroup of G. Let z -4 € L. There-
fore x :7¢($),§ = ¢(y) =Ty = gb(.%') '¢(y)7x7y €L = qﬁ(x-y),ﬂc,y €L=
7 -y € L (by definition) and (z)~! = [¢(z)] Lo € L = ¢(x71), 27! € L.
Therefore ! € L. Define: T = {z € G|¢(z) € L}. The correspondence
isl—-1< L=T zv€L=2=¢(x)c L (by definition of L) = = € T.
Therefore L C T.......... (iii)

Conversely, let t € T, ¢(t) € L = ¢(t) = ¢(e),e € L. Therefore ¢(te™!) =
d(t)p(e™) = o(t)[p(e)] ! = ¢(t)[p(t)]"* = e. Therefore te™' € K C L =
tele L=te Le=t¢€ L. Therefore T C L.......... (iv)

From (iii) and (iv), T'= L

Therefore the correspondence is 1 — 1.

Theorem 1.78 Let ¢ be a homomorphism of G onto é_wz'th kernal K.
Let N be a normal subgroup of G, N = {x € G|¢(x) € N}. Then G/N
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isomorphic to G/N. Equivalently G/N = (G/K)/(N/K)

Proof: Let ¢ : G — G is a homomorphism. Then 6 : G — G/N by
0(g) = N§ is a homomorphism of G onto G/N. Now, define ¢ : G — G/N
by ¥(g) =0 - ¢(g). (i-e) ¥(g9) = N¢(g). .- 0 and ¢ are onto mapping, ¥ is
also onto mapping.

1 is a homomorphism:

Suppose a,b € G. Then ¥(a) = Né(a) and (b)) = N¢(b). Now, 9 (a -
b) = No(ab) = Nig(a) - 6(b)] = No(a) - No(b) = (a) - h(b). . 9 is a
homomorphism. Let T be the kernal of ¢. (i.e) T'= {g € G|¢(9) = N}, N
is identity in G/N.

Claim that T = N. Let n € N = ¢(n) € N[ N = {z € G/O(x) €
N} = Né(n) = N = ¢4(n) = N = n € T [ by the definition of 7T7.
SNCT...... (1)

Lett €T = () =N = N-¢(t) =N = ¢(t) € N =t € N [by the
definition of N]. -.T C N.......... (2)

From (1) and (2) T'= N. Thus % is a homomorphism of G onto G/N with
kernal N. By the fundamental theorem of homomorphism, G/N = G/N.
'~ G2G/K and N = N/K

[ ¢: G onto G is a homomorphism with kernal K]

= G/K =G

and ¢/N : N onto N is a homomorphism with kernal K

= N/K=N

-.G/N = %—g [- G is isomorphic to G /K]

and N = N/K

¢ : G onto G is a homomorphism with kernal K.

¢/N : N onto N is a homomorphism with kernal K.

S.GIN = %—g [by above theorem]

This theorem is known as first homomorphism theorem.

Theorem 1.79 CAYLEY’S THEOREM: FEvery group is isomorphic to
a subgroup of A(S) for some appropriate S, Where A(S) is the set of all
1 — 1 mapping from S onto S. (i.e.) set if all bijection on S.

Proof: Let G be a group, choose S = G. Define T, : S(G) — S(G) by
2Ty = xg. Clearly Ty is well defined.

T, is onto:

For y € S, choose z = yg~1. Then 2T, = (yg )T, = yg'g = y. (i.e.)
every element y € G has pre-image yg~' € G under T,. ... Ty is onto
T,is1—1:

Let z,y € S. Suppose 2T, = yI, = z9g = yg = « =y (By RCL) = T,
is 1 —1. . T, € A(S). Now, consider the map ¢ : G — A(S),defined by
Y(g) = Ty. Suppose g, h € G, then (2)T,-T}, = ((x)Ty)T}, = (x9)Th = xgh =
(X)Tyn V. . Ty-Ty = Tgn = ¥(gh) = ¥(g) - (h). /. ¢ is a homomorphism.
Let K be the kernal of ¢ , then K = {g € G|i(g) = e, € is the identity
in A(S)} = {g € G|T, = I, Identity function S — S} = {g € G|2T, = =z,
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Identity function S — S} = {¢g € G|zg = =, Identity function S — S} =
{g € G|g = e, Identity in G} = {e}. ... ¢ is an isomorphism of G into S.
[By corollary to Lemma [64] A homomorphism ¢ : G — G with kernal Ky
is an isomorphism of G into G < Ky = {e}.

Theorem 1.80 If G is a group, H is a subgroup of G, and S is the set of all
right cosets of H in G, then there is a homomorphism 0 of G into A(S), and
the kernal of 0 is the largest normal subgroup of G,which is contained in H.
Proof: Let G be a group. Let H be a subgroup of G and S = {Hg|g € G}.
Define t; : S — S by (Hz)ty = Hxg,Vx € G. Clearly, t, is well defined.

ty is onto: Suppose, Hy € S. Consider, z = Hyg™! € S. Now, (z)t; =
(Hyg Yty = (Hyg ')g = Hy. .. t, is onto.

tg is 1-1:

Let Hx,Hy € S. Suppose (Hz)ty, = (Hy)ty = Hxg = Hyg = Hz =
Hy. . . tyis1—1. /. t;is 1 — 1 and onto, = tyn € A(S). Define a function
§:G — A(S) by 6(g) = ty. Clearly 6 is well defined.

0 is a homomorphism:

For every Hx € A(S),(Hx)tg, = Haxgh = (Hzg)t, = ((Hx)tg)t, =
(Hx)tgn = ((Hx)tg)t, VHax € S. This is true for every Hx € S. . tg, =
tg-tn = 0(gh) = 6(g)-0(h). .. 0 is a homomorphism. Let K be the kernal of
0. K ={g € G|0(g9) = €,¢e is identity in A(S)}={g € G|ty =1,1:5S — S'is
identity} ={g € G|(Hz)ty = (Hz)I,I: S — S is identity} ={g € G|Hzg =
HzI,I:S — Sisidentity} ={g € G|Hzg = Hz}....cene..... (1)

={g € Glzgz~! € H,Vx € G} =Normal subgroup of G. .-. kernal of a ho-
momorphism is a normal subgroup of G.

To prove: K C H

Suppose let b € K. . Hzb = Hz [by(1)] Vo € G. Put x = e = Heb =
He= Hb=H =beH [Hao=H&acH. =KCH. ""Kisa
normal subgroup of G contained in H.

To prove: K is the largest normal subgroup of G.

Suppose N is a normal subgroup of G which is contained in H. Let n € N.
.+ N is normal in G,znz™' € N Vox € G = anz~! € H [~ N C H| =
Hxn=Hzx VYo € G[- Hao=Hb< ab™' € H=ne K [by(1)] = N C K.
.. K is the largest normal subgroup of G contained in H.

Lemma 1.81 If G is a finite group and H # G is subgroup of G such that
O(G) does not divides i(H)!. Then H must contain a non trivial normal
subgroup of G. In particular G cannot be simple.

Proof: By above theorem, there is a homomorphism 6 : G — A(S) where
S is the set of all right cosets of H in G. ... O(S) = i(H), index of H.
. O(A(S)) = i(H)!. If O(G) does not divides i(H)! = O(A(S)) = O(G)
does not divides O(A(S)). Then by Lagrange’s theorem, we have A(S) can
have no subgroup of order O(G). Hence no subgroup is isomorphic to G.
However, A(S) does not contain §(G) C A(S). Hence, #(G) cannot be
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isomorphic to G. (i.e.) # cannot be an isomorphism but then kernal of 6 is
non-trivial normal subgroup of H. (i.e.) Here G has a non-trivial normal
subgroup kernal of . Hence GG cannot be simple.

Example 1.82 If G is a group of order 36 and H is a subgroup of order 9.
Then prove that, H contains a normal subgroup of order 3.

Proof: O(G) = 36;0(H) = 9%i(H) = o) = 36/9 = 4i(H)! = 4 =
24 = i(H)! < O(G). .. By above theorem, H contains non-trivial normal
subgroup N. (i.e.) N is a normal subgroup of H. .. By Lagrange’s Theorem,
O(N)/O(H). .. O(N)/9 = O(N) =1 (or) O(N) =3 (or) O(N) =9. If
O(N)=1,then N ={e} =< N #{e}. O(N)=9=N=H =< N #
H. - O(N)=3.

Example 1.83 Suppose G is a group of order 99 and H is a subgroup of G
order 11. Then H is a normal subgroup of G.

Proof: O(G) = 99;0(H) = 1L;i(H) = G} = § = 9;i(H)! = oL
By previous Lemma, H must contain a non-trivial normal subgroup N of

G = O(N)/O(H)=0O(N)/11 = O(N) =1 (or) O(N) =11 but O(N) # 1,
since non-trivial. . O(N) = 11 = O(H) = N = H. .. H is a normal
subgroup of G.

Permutation Group:
Suppose S, is a finite set, having n elements, S = {x1, 2, ...z, }. Then
the set of all 1 — 1 mapping of S onto itself, written as A(S) = .S,,.

Definition 1.84 Let S be a set and 6 € A(S).Given two elements a,b € S
we define a = 0° < b= ab® for some integer i. [i can be +ve, —ve or zero|

Result 1.85 Congruence 0 is an equivalence relation.

Proof: (i) = 0 reflexive: a = af® = ae = a = 0% Va € S. =0 is reflexive.
(ii) = 6 is symmetric: Suppose a = 6° then b = af® for some integer i =
a="00""=b=60% =0 is symmetric.

(iii) = 6 is transitive: Suppose a = #° and b = 6° = b = af’ and ¢ = b§7 for
some integer i and j. Now, ¢ = b- 67 = (a#")0? = a(0"17) = a = 6° for some
integer ¢ =i + j. .= 6 is transitive.
Hence = 0 is an equivalence relation.

Let S be a set and 0 € A(S). Given two elements a,b € S we define a =
6" iff b = af’. = 0 is an equivalence relation which induces a decomposition
of S into disjoint subsets namely the equivalence classes.
Let s € S, the equivalence classes of s is called the orbit of s under 8; thus
the orbit of s under # consists of the elements s0%,i = 0, +1, £2, ....
If S is a finite set and s € S, there is a smallest positive integer I = I(s),
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depending on s such that s§' = s. The orbit of s under 6 then consists
of an element {s, 56,562, s56°,...s60'"1}. A cycle of # is the ordered set of
{s, 50,502, 56°,..50""1}.

Example 1.86 Let S ={1,2,3,4}.
1 2 3 4
0_<3 1 2 4)
1 2 3

¢_(1 3 2 )
gop_ (P23 Ay (123 4) (1234
“\3 1 2 4 1 3 2 4/ \2 1 3 4

g1 (1234

2 3 1 4

Example 1.87 Find the orbit and cycles of the following permutations,
- 1 2 3 45 6
~\2 1 3 5 6 4

Solution: S ={1,2,3,4,5,6}

=~

B

Orbit of 1:
10°,16,162%,163, ...
109 =1

10 =1-06=2

102=(10)-06=2-0=1

163 = (16%)-0=1-0 =2

104 =(16%)-0=2-0=1

165 = (16Y) -0 =1-0=2

.. Orbit of 1 consists of the element {1,2}
Orbit of 2:

2600 201,262, ...

200 =2

200 =2.0=1

202 =(2-60)-0=1-0=2

203 =(2-0%)-0=2-0=1

.. Orbit of 2 consists of the element {1,2}
Orbit of 3:

309,301,362, ...

30° =3

30'=3-0=3

302 =(30)-0=3-0=3
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.. Orbit of 3 consist of the element {3}
Orbit of 4:

400 401, 462, ...

400 = 4

40' =4-60=5

402 = (40) -0 =5-0=6

403 = (40%)-0=6-0 =4

404 = (4603)-0=4-0=5

.. Orbit of 4 consists of the element {4, 5,6}
Orbit of 5:

569,501, 502, ...

50 =5

50! =50 =6

502 =(5-0)-0=6-0=4

503 =(5-0%)-0=4-0=5

.. Orbit of 5 consists of the element {6, 5,4}
Orbit of 6:

660,601,662, ...

60" =6

60! =6-0=4

602 =(60)-0=4-0=5

603 = (60%)-0=5-0==6

.. Orbit of 6 consists of the element {4, 5,6}
Cycles are the ordered set of orbits

. Cyclesis (12) (3) (456)

Example 1.88 Find the orbit cycle of the following permutation
o — 123 456 7 89
~\2 38164759

Solution: Orbit of 1: 169,161, 16>
16° =1

101 =10 =2

162 =(10)0 =2-0=3

Orbit of 1 ={1,2,3,8,5,6,4}
Orbit of 2 ={2,3,8,5,6,4,1}
Orbit of 3 ={3,8,5,6,4,1,2}
Orbit of 4 = {4,1,2,3,8,5,6}
Orbit of 5 = {5,6,4,1,2,3,8}
Orbit of 6 = {6,4,1,2,3,8,5}
Orbit of 7= {7}

Orbit of 8 = {8,5,6,4,1,2,3}
Orbit of 9 = {9}

UNIT I
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Cycles are (123856 4) (7) (9)
Product of all the cycles, Cq,Cy,Cy

c_(1 234567809
2381647509

Theorem 1.89 FEvery permutation is the Product of its cycles.
Proof: Let 6 be a permutation on the set S. Then its cycles are of the form
(s, 80, ....s0'~1), where [ is the least positive integer such that S6! = S, s € S.
Let 1 be the product of all distinct cycles of 6.
claim that 8 = ¢
By multiplication of cycles and since the cycles and since the cycle of 6 are
disjoint, the image of s € S under 6 which is s’ is same as the image of S’
under . So, 0,1 have the same effect on every element of S. Hence, § = 1
.. Every permutation is the product of disjoint cycles.
1 2
= (3 ]

8 9

6 9
The cycles are of the form
01 =(1060%)=(135);0=(22020%) =(274);03=(68);04=(9)
Y="01-02-05-0,=(135) (274) (68) (9)

Example 1.90 Let
345 6 7
5 2 1 8 4

Lemma 1.91 FEvery permutation is the product of 2 cycles.

Proof: Let 6 be the permutation on S = {ay, as, ..., a,}. By above lemma,
0 can be written as the product of its cycles. Let (aj,as,...,a,) be any
cycle 0 of length m(m < n). This can be decomposed as (a1, az, ..., amy) =
(a1,a2) (a1,as)...(a1,am). .. Ay, m-cycle can be written as the product of
2-cycles. Any permutation can be expressed as a product of transpositions.
Since every permutation is the product of its disjoint cycles and every cycle
is a product of 2-cycles, it follows that every permutation is a product of
2-cycles.

Note 1.92 We shall refer to 2-cycles as transpositions.

Definition 1.93 A permutation 0 € S, is said to be an even permutation
if it can be represented as a product of an even number of transpositions and
is said to be an odd permutation if it can be represented as a product of an
odd number of transpositions.
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Example 1.94

1 2 3 4 '
(2 1 4 3) =(12)(34) = even permutation
1 23 45 |

(2 1 3 5 4>_(1 2) (3) (4 5)—0dd permutation

Result 1.95 A permutation can be written either as a product of an even
number of transpositions or as a product of an odd number of transpositions
and not both.

Proof: Let 0 € S,

Suppose 0 can be written as a product of X transpositions in one way and
can be written as a product of Y transpositions in another way. Consider a
polynomial in variables x1, o, ..., T, which are the elements of S.

P(x1,x9,...;xn) = H(m, —xj).
1<j

Let 6 € S, be a permutation on n-symbols 1,2,...,n. Let # be act on
P(x1,x9,...,x,) by

0: P(l’l,mg, ,:L'n> = 1_‘[(.%'Z — acj) — H(xg(z) — l’g(j)).

i<j i<j
It is clear that 6 : P(x1,x9,...,x,) — £P(21, 22, ..., 2,). For example,
consider § = (1 3 4) (2 5) € S5. Then P(x1,x9,...,25) = (1 — x2)(x1 —

z3)(x1 — x4) (21 — 25) (02 — 23) (22 — 24) (22 — @5) (23 — 74) (23 — 75) (74 — T5);
H(P(.%'l,xg, ...,x5)) = (m‘g — x5)(x3 — l"4)<$3 — .Tl)(xg — :L'2)(.ZC5 — $4)($5 —

1) (25 — 22)(24 — 21) (24 — 22) (21 — 72) = —[(21 — 22) (21 — 23) (21 — 24) (21 —
z5) (22 —x3) (22 —24) (T2 —25) (23— 24) (¥3—75) (T4 —25)] = —P (21,22, ..., T5).
Suppose 6§ = (1,2) € Sa; P(x1,22) = (1 — x2); 0(P(21,22)) = (x2 —x1) =
—(x1—22) = —P(x1,22). (i.e)The effect of a transposition on P is to change

the sign of P. Now the operation by a transposition (rs) where r < s has
the following effects on P.

(i) Any factor of P which contains neither the suffix r nor s remains un-
changed

(ii) The single factor (x, — z5) changes its sign by replacing r by s and s by
r

(iii) The remaining factor which contain either the suffix r (or) s but not
both can be grouped into the following 3 types of products.

(a) [(z1 — @) (21 — @) (w2 — 7)) (22 — @6)]- [(Tr—1 — @) (W71 — @5))]

(b) [(@r = zrg1) (@ra1 — )| [(@r — Tra2) (Trg2 — @5)]- (20 — @s1) (Ts-1 — 26
() [(wr — zsq1)(xs — ws1)][(Tr — Tsy2)(Ts — Tsg2)]-[(2r — ) (25 — 20)]
On replacing r by s and s by r, the signs of all types of products do not
change. Hence effect of the transposition (rs) on P is to change the sign of
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P. (i.e) P operated upon by a transposition becomes —P. If the permuta-
tion € can be expressed as a product of x transposition then,

0P =[(-1)(=1)...(=D)]P  (x times)

= (=% P.......... (1)

Also if 0 can be expressed as a product of y transpositions then,

0P = [(-1)(—1)...(=D)]P  (y times)

=(=1)Y-P...... (2)

from (1) and (2), (=1)* - P=(-1)Y - P = (—-1)* = (—-1)Y

= x and y are both odd (or) z and y are both even.

Lemma 1.96 S,, has a normal subset of index 2, the alternating group Ay,

consisting of all even permutations.

Proof: We know that S, is group. A, is the subset of 5, consisting of all

even permutations.

A, is a subgroup of Sj,:

Let 61,05 € A,. = 61 and 0, are even permutations. = #; - 65 is an even

permutation. = 61 - 03 € A, [." product of any two even permutation is

even|. .. A, is a subgroup of S,,.

Claim that A,, is normal in S,;:

Let W = {1, —1} is a group under multiplication. Define % : S,, — W by
¥(s) =

{1 if s is an even permutation

—1 if sis an odd permutation

Claim that v is a homomorphism onto W. Let s,t € S5,,.

Case(i) If s,t are even, then st is even. . ¢(st) =1=1-1=1(s) - ¢(t)

Case(ii) If s,t are odd, then st is even. . ¢(st) =1 = —1x —1 = 9(s) - (t)

Case(iii) If s is odd and ¢ is even, then st is odd. .. ¢(st) = —1=—-1x1=
P(s) - (1)

Case(iv) Le t s is even and ¢ is odd. (i.e) ¥(s) =1 and 9(t) = —1 = st is

odd. . ¢(st) = =1 =1x—1=1)(s)-1(t) = 9 is a homomorphism. Clearly

1) is onto.

Now, to prove A, is normal in S,. kernal ) = {s € S, |¢(s) = identity in

W} = {s € Sy|¢(s) = 1} = A,. Thus ¢ is a homomorphism of S,, onto

W with kernal A,. .. By Lemma @%3, A, = kernal ¢ is normal in S,.

By Theorem [T S,/A, = W. = O(W) = O(§*) = O(52) =2 [

O(G/H) = 5 = ic(H)] = is, (An) = 2. Also, O(A,) = Z52) = 2.
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2. UNIT II

Another Counting Principle

Definition 2.1 Ifa,b € G, then b is said to be a conjugate of a in G if there
exists an element ¢ € G such that b = ¢ tac. We shall write this conjugate
relation as a ~b. (i.e.) a ~ b= b is conjugate to a = b = c lac,c € G.

Lemma 2.2 Conjugation is an equivalence relation on G.

Proof: (i) ~ is reflexive:

Let a € G, then a = a lae,a € G = a ~aVa € G. .~ is reflexive.

(ii) ~ is symmetric:

Suppose, a ~ b = b =clac,c€ G. = a=cbc ! = (c) () =
7 lbr,x =c' € G = b~ a. ~ is symmetric.

(iii)~ is transitive:

Suppose a ~ band b ~ ¢. Thena ~b=b=z""ax,x € G; b~ c =
c=ytby,y € G. Now, ¢ = y by = y Haz"tar)y = (yta Ha(zy) =
(ry)Lta(zy) = 27 laz, 2 =2y € G = a ~ c. .~ is transitive.

Hence, ~ is an equivalence relation.

1

Definition 2.3 For any a € G, let C(a) = {z € G|z ~ a},C(a) is the
equivalence class a in G, under the relation ~. It is usually called the
conjugate class of a € G

Remark 2.4 C(a) = {x € G|z ~a} = {z € G|z ~ a} = {z € Gz =
ytay,y € G} = {ylayly € G}. If consists of the set of all distinct el-
ements of the form x 'ax as x ranges over G. Suppose the number of
elements in C(a) is denoted by Ca. Since the union of all distinct conjugate
classes is G,

G =C(a1)UC(a2)U...UCl(ay)
O(G)=Cay +Caz + ... + Ca, = Z Ca;
a; €G
Where the summation runs over each element a in each conjugate classes.

Definition 2.5 If a € G, N(a), normaliser of a is defined as {z € Glax =
za}

Example 2.6 (i) G = {1,—1,i,—i}. Whena=1,N(a) = N(1) ={1,—1,
i,—i} = G; When a = —1 N( 1) =G.

(i6) G = {Z5,@s}. a = [2, N(a) = N([2)) = {H[][]H[]}

(’&ZZ) G=253= {67¢7¢7¢ (LR N } ( ) { ¢} ( = {6 Y, wz}
N(?) = {e. 9% 9}.
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Lemma 2.7 N(a) is a subgroup of G.

Proof: Let z,y € N(a) = ar = za and ay = ya .......... (1)

Now, a(zy) = (ax)y = (za)y [by(1)] = z(ay) = z(ya) [by(1)] = (zy)a =
zy € N(a) Vz,y € N(a) .......... (2)

Suppose x € N(a) = ax = xa = v 'a = az~! [By premultiply and post
multiply by 27 !] = 27! € N(a) .......... (3)

By (2) and (3), N(a) is a subgroup of G.

Calculation for C(a):
Let G = 85 = {e,0,9.¢ 9,9 - 6,97} C(g) = {a7'gulz € S5} =
{e7ge, 0 o, v P, (¢ - ) o(g - V), (W - )T 6(Y - ¢), (V*) oy}
C(1,2) 2{6_1(172)6, (1,2)" (L, 2)(1, (1,2)9, (¢-4) 7 (1,2)(¢-1), (-
¢)" (L, 2)(¢ - ¢), (¥?) (1,29} = { (12)(123),(12) (12)(12),
(132)(12)(132), ( 3)(12) (13),(23)(12)(23),(231)(12) (132)} =
{(12),(12),23)} ( )—{¢,¢'¢, -0}

Capz) = 0(C(1,2)) = :g o

Theorem 2.8 If G is a finite group, then Cy = 0?157?))) In other wards,

the number of elements conjugate to a in G is the index of N(a) in G.

Proof: We shall show that two elements in the same right coset of N(a) in
G, yields the same conjugate of a in GG, where as two elements in different
cosets of N(a) in G gives rise to different conjugate of a in G. In this way
we shall have a 1 — 1 correspondence between conjugate of a in G and the
right cosets of N(a) in G. Suppose z,y € G are in the same right cosets of
N(a) in G. Then y =nx wheren € N(a),[-y € N(a)-z,y =nx] =y ' =

(nz)™ =27 'n7Y ylay = a7 nTlay = 27 inTtane = 2 (nTlan)s =

z tax = 27 ax. Hence, x and y result in the same conjugate of a in G. In
other wards if « and y are in different right cosets of N(a) in G.

Claim that 2 'ax # y~'ay. Suppose not x~'ax = y~'ay. Premultiply by
y and post multiply by !, then yxlazz~! = y(y lay)z™! = yr~la =
ayr~t = (yzVa=a(yz™) = yr ' € N(a) [.-ab~' € H & Ha = Hb| =
N(a) -y = N(a) -z = = and y to be in the same right cosets of N(a)
in G =<« to the fact that x and y are in different right coset of N(a) in
G. .z lax # ylay. Hence = and y yield the different conjugate of a in G
if they are in different right cosets of N(a) in G. .. The number of elements
conjugate to a in G = number of distinct right cosets of N(a) in G. (i.e.)
the number of elements conjugate to a in G = the index of normaliser of a

inG. (ie.) Cy = %. Hence, the theorem.

Corollary 2.9

_ 0(G)
G)= ZW, Va € G
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Proof: By previous theorem,

6= C=3 gnii

acG 8 O(N(a))

Where the sum runs over one element a from in each conjugate class. This
is known as class equation of G.

Example 2.10 State and Prove class equation of a group G.
Proof: The proof is obvious from above theorem and its corollary.

Definition 2.11 Centre of a group G: The centre Z (or) Z(G) of a
group G is defined by Z = {z € G|lzrz = zx Yz € G}.

Example 2.12 (i) G = {1,-1,i,—i} and Z = G.
(ii) G = Ss and Z(G) = Z(S3) = {e}.

Lemma 2.13 ¢ € Z(G) & N(a) = G; if G is finite, a € Z(G) &
O(N(a)) = 0(G)

Proof: Suppose a € Z(G) = ar = za Vo € G = = € N(a) Vx €
G = G C N(a). But N(a) € G. .. N(a) = G. Conversely suppose
N(a) =G = 2 € N(a) Vx € G = ax = za Vo € G = a € Z(G). If
G is finite, and a € Z < N(a) = G < O(N(a)) = O(G).

Theorem 2.14 Application-1: If O(G) = p"™, where p is a prime number
then centre of G, Z(G) # {e}. [Z is non-trival]

Proof: If a € G, Since N(a) is a subgroup of G by Lagrange’s theorem
Og\(fc(;;)) = p" = O(N(a))/p". Let O(N(a))/p™®, na < n. a € Z(GQ) <
O(G) = O(N(a)) & p" = p"™ & n = na. By class equation, O(G) =
> %, where the sum runs over the set of elements a € G. Using one a,
from each conjugate class.

0(G) oG
O(G) =
2 D@ 2 OV(a))

oG ) o(G)

= Z + Z Y&
ov=o@ W (@) 5 avzo OW (@)
0(G) oG
= Z — Z I\
iz 99 oo O @)

B 0(G)
=21t D GN)

a€G  O(N(a))#O0(G)

0(G)
=0(2Z)+ Y. s
oo V(@)
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Let O(Z) = Z.
0(G)
OG)=7Z+
(=2 2 oy
P
n#nap “
=7Z+ z pltT e
n#nq
p":Z—l—Zpk,k::n—na>0 .......... (1)
Na<n
Since p/p" and p/ Z Pk,
Na<n

from (1) p/(" = Y 0*) = p/Z = p/0O(Z)
Na<n
e € Z,0(Z) # op/O(Z),0(Z) # 0 and p is prime. . O(Z) > 1. ..
Z(Q) # {e}. Hence, Z is non-trivial and the theorem.

Corollary 2.15 IfO(G) = p? where p is a prime number, then G is abelian.
Proof: Suppose O(G) = p?, to prove G is abelian, it is enough to prove that
Z(G) = G. Since O(G) = p?, by previous theorem Z(G) # {e}. Since Z(G)
is a subgroup of GG, by Lagrange’s theorem, O(OZ(E;G))) =9’ = 0(Z(Q))/p* =
O(Z(G)) =1 (or) p (or) p*.

Case(i): O(Z(G)) # 1. Z(G) is non-trival].

Case(ii): O(Z(G)) =p* = O(G) = O(Z(G)) = O(G) = Z(G) = G = G is
abelian.

Case(iii) Suppose, O(Z(G)) = p. Claim that there is an element a € G such
that a ¢ Z. Suppose not,(i.e.) if a € Z = O(N(a)) = O(G) (by Lemma

2.13). By class equation,

00 0@
U= 2 000~y o1 ON(@) ~ o

O(N(a))=0 ac”Z

- O(G) = 0(Z) = O(G) = p =< to the fact O(G) = p?. Hence the claim,
there is an element a € G such that a ¢ Z. Consider the subgroup N(a)
in G, then Z(G) C N(a) C G [.a € N(a) and a ¢ Z]. .. O(N(a)) >
O(Z(G))=p coveeueene (2)

By Lagrange’s theorem O(%C(g)) =p? = O(N(a))/p* ... (3)

= O(N(@) = [by (2) and (3)] = O(N(a)) = p = O(G) = O(N(a)) =
OG) = N(a)=G=acZ=<toa¢ Z. OZ(G)) #p. ... The only
possibility of O(Z(Q)) = p?> = O(G) = Z(G) = G. Hence, G is abelian.
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Theorem 2.16 Application-2: CAUCHY’S THEOREM Ifp is a prime
number and p/O(G), then G has an element of order p.

Proof: We have to find an element a # e € G such that it satisfier a? = e.
We prove this theorem by induction on O(G). The result is clearly true for
a group of order 1. We assume that the theorem is true, for all groups T'
such that O(T) < O(G). Now, we have to prove the theorem for G.
Case(i): Suppose W be any subgroup of G, W # G. such that p/O(W) [p
divides the order of any non-trivial subgroup of G|. ... O(W) < O(G).
By induction hypothesis, the theorem is true for W, then there exists an
element a € W,a # e such that a? = e = a # e,a € G, such that
a’? =e (""a€W CG). .G has an element of order p.

Case(ii): Suppose we assume that p does not divide order of any proper
subgroup of G. In particular, if a ¢ Z then N(a) # G (by Lemma .
(i.e.) N(a) is a proper subgroup of G if a ¢ Z(a). By assumption p does
not divide O(N(a)). Consider the class equation of G,

0
06 = 2 5V

0(G) O(G)
N(a)=G O(N(a)) N(a)#£G O(N(a))

0(G) 0(G)

= +
2 00V@) * 2, OV
0(G)

Thus p/O(G) and

= p/O(Z(Q)) [from(1)], where Z(G) is a proper subgroup of G. But we
have assumed that p does not divide any proper subgroup of G. .. Z(G)
cannot be a proper subgroup of G. . Z(G) = G = G is abelian. Thus
p/O(G) and G is abelian. .. By Cauchy’s theorem for abelian group, there
exists a # e,a € G such that a? = e
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Theorem 2.17 Sylow’s Theorem for arbitrary groups: If p™/O(G),
p™ Tt does not divides O(G), then G has a subgroup of order p™, where p is
a prime number.

Proof: We prove this theorem by induction on O(G). If O(G) = 1, the
theorem is vacuously true. If O(G) = 2, the theorem only relevant prime
number is 2. 2'/0(G), 2% does not divides O(G). Certainly G has a sub-
group of order 2 namely itself. The result is true if O(G) = 2. Suppose,
we assume that the theorem is true for all groups of order less than O(G).
We want to show that the result is true for group G. Suppose assume that
p™/O(G), p™*! does not divides O(G), where p is a prime number, m > 1.
Case(i): Suppose there exists a proper subgroup H(G) such that p™/O(H).
" H is a proper subgroup of G,O(H) < O(G). .. By induction hypothesis,
H would have a subgroup T' of order p™. Since T is a subgroup of H and
H is a subgroup of G, T is a subgroup of G of order p™.

Case(ii): Suppose we assume that p”™ does not divides O(H) for any sub-
group H(G) and H # G. [(i.e.) p™ does not divide any proper subgroup
of O(G)]. If a € G, then N(a) = {x € Glaxr = za} is a subgroup of G. If
a ¢ Z(G) then N(a) # G. (i.e.) N(a) is a proper subgroup of G. ... By
our assumption p™ does not divides O(N(a)). Consider the class equation,
O(G) = Y C,, where the sum runs over one element a for each conjugate
class.

0(G)
ZO N(a))

_« 0(G) 0(G)
%% «z*zo N(a)
- 06) |~ 0@)
=250 Z O(N(a))

[ifaeZ= O(N(a)) =0(G)]

- S 1+ 3 shv

ac€”Z aéZ

(@)
0(G) 2+ (1)
” % o0

Since p™/O(G) and p™ does not divides O(N(a)) we have pm/%

i 0(G)
jp/ZONw>
G

a¢”Z
= p"/0(Z).
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Since p™/O(Z) by Cauchy’s theorem, Z has an element b # e such that
b? = e. B is a subgroup of G of order p. .. B is normal in G [." Every
subgroup of an abelian group is normal]. We can form he quotient group
G.G = G/B = {Balz € G}. Now, O(G) = O(G/B) = g} = 24 <
O(G). Also, p™1/O(G/B) = O(G) [ p™/O(G) = O(G) = tp™ some
integer t]. Now O(G) = Ogg; = pm =tp™ ! = p™1/O(G). Also, p™ does
not divides O(G) and O(G) < O(G) [p™~1/O(G) and p™ does not divides
O(G)]. .. By induction hypothesis (G) has a subgroup P of order p™~!. Let
P = {zx € G|xB € P}, then P is a subgroup of G by fundamental theorem of

homomorphism, P = P/B. - pm~! = O(P) = % = % = O(P) =p™.

Thus P is a required p-Sylow subgroup of G of order p”. Hence the theorem.

Direct Product:

Definition 2.18 FExternal Direct Product: Let A and B be any two
groups. Consider the cartesian product of A and B,G = A x B = {(a,b)|a €
A,b € B} Let x = (al,bl)/al € A b € B;y= (ag,bg)/(IQ € A by € B.
Define z -y = (a1, b1) - (a2, b2) = (ar1a2,b1bs).

Result 2.19 Under this operation (-),G is a group and this group G is

called external direct product of A and B.

Proof: (i) (-) is closed: Let x = (a1,b1) € G,y = (az,b2) € G. Now,

-y = (al,bl) . (CLQ,bQ) = ((Ilag,blbg) e ( ajag € A, b1by € B) () is

closed

(i) (-) is associative: Let z = (a1,b1) € G,y = (a2,b2) € G and z =

(a3,b3) € G. Then z - ( ) = (al,bl) . [(ag,bg) . (ag,bg)] = (al,bl) :

[(azb2), (asbs)] = (a1-(azas), bi-(b2b3)) = ((araz)-as, (bib2)-bs) = (a1az, b1(b2)-

(a3,b3)) = (z-y) -z Vo,y,z € G. . (-) is associative.

(iii) Existence of identity: Con81der e = (e1, e2), where e; is the identity ele-

ment in A and eg is the identity element in B. Now, z-e = (a1,b1)-(e1,e2) =

(a1 -e1,b1-e2) = (a1,b1) =xand e-z =z Vr € G. ".e = (e1,e2) act as a

identity element of G.

(iv)Existence of inverse: let z = (a1,b;) € G; ~! = (a7 ', b7}) € G, where
te Abt € B. Now, z -2~ = (ag, b)) - (a7',07Y) = (ara;t,bibyt) =

(e1,e2) € G, where e is the identity element in A and eg is the identity

element in B. .-z =e. . (a7’ by!) acts as the inverse of G.

.. G is a group.

Definition 2.20 Let G1,Go,Gs...Gy, be the n groups. Let G = G x Go X
Gs X ... x Gy = {(91,92---9n)/1 € G1,92 € Ga...gp € Gy)}. Let x =

(91,92.-9n) € Gi y = (91,95--9,) € G. Define -y = (g1,92.-9n) -
(91, 95---9,) = (9191---9n9,,). Under this operation, G is a group and we

called G as an external direct product of the group G1,G2,Gs...Gy,
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Internal Direct Product: Let A and B be any two groups. Consider
G =AxBand A= {(a,f) € Gla € A, f is the identity element in B};
B = {(b,f) € Gla € B,e is the identity element in A}. Clearly A and B
are the subgroups of G. Define a map ¢ : A — A by ¢(a) = (a, f),a € A.
Suppose ¢(a) = ¢(a) = (a,f) = (b,f) = a=0b. . ¢pis1—1. ¢(ab) =
(ab, f) = (a, f)- (b, f) = ¢(a)-&(b). -.disa homomorphism Let (a,f) €A
then there exists an element a € A such that ¢(a) = (a, f). .. ¢ is onto. .. ¢
is an isomorphism of A4 onto A. (i.e.) A= A. Similarly Deﬁne v:B— B
by ¥(b) = (e,b). Then ¥ is a homomorphism of B onto B. -.B=B. To
prove: A and B are normal subgroups of G. Let z = = (a1,b1) € G where
ap € Aby € B; x' = (a7',b7") € G where a7 € A,bf1 € B. Let
n = (a, f) € A. Now,

a1,b1)(a, f)(ﬂh by )

aia, blf)(% by )

ajaaj ,blfb1 )

araay’,biby' f)

= (alaal Jf) €A [ ajaa;t € A and f is identity in B]
= aznz e A,Vr e G,n e A.

anz ! =

~—~~ Y~ N

-, A is a normal subgroup of G. Similarly we can prove that B is the normal
subgroup of G. Claim that G = AB and for every ¢ € G, has unique
decomposition in the form g = ab;a € A,b € B. Let g€ G = Ax B =
{(a,b)lac Abe B, g=(a,b) = (a, f)e, f) = g = aba = (a, f) € &; b=
(e,b) € B
Uniqueness: Let g € G can be written as ¢ = 9,z € A,y € B,z =
(z,f),z € A, f is the identity element in B and y = (e,y),y € B,e is
the identity element in A. ¢ = zy = (m fle,y) = (x,y), but g = (a,b
. (a,b) = ($y):>a—xandb:y T = (v,f) = (a,f) =aand y =
(e,y) = (e,b) =b. .. g € G can be umquely written as g = a-b,a € A,b € B.
Since g € G is arbltrary chosen G = AB is called the internal direct product
of the group A and B.

~—

Definition 2.21 Let G be a group and A, B be a normal subgroup of G and
A=A and B = B in such a way g € G has a unique representation of the
form g =ab,a € A;b € B. Then G is called the internal direct product of A
and B

Definition 2.22 Let G be a group and N1, Na, ..., N, be normal subgroups
of G such that

(i) G = N1Ny--- N,

(ii) Given g € G then g = mimgy---my, m; € N; is a unique representation.
Then G is called the internal direct product of the groups N1, Na, ..., Np,.
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Lemma 2.23 Suppose G is the internal product of N1, Na, ..., N,. Then for
i # j,NiNN; ={e} and if a € N;,b € N then ab = ba

Proof: Let x € N;NN; = =z € N; and v € N;. When z € N;,z =
€1€2 * * * €—1TCj41 * " €Ep cernnnnnnn (1)

Here e; = e = ... = €1 = €41 = ... = e, = e € N; where ¢; € N;,i =
1,2,..,n and i@ # j. Similarly x € N; then, x = ejea - - - ej_1€€541 - - -
€ji—1TE€j41 """ En veernnnnn (2)

Here e1 = e2 = ... = €1 = €11 = ... = €j_1 = €j41 = ... = e, = €.

Since any element in G, in particular x has unique representation of the
form mymsg - - - my, where m; € N;. .. The two composition [i.e.(1) and (2)]
in this form of z must coincide and the entry from /V; in each must be equal.
€162 €j_1T€i11 " €y = €1€2° - Cj_1€;€;41 " €j_1T€Cj41-- €, for each e; = e Vi.
sox=e . N;NN; = {e} Vi # j. To prove ab = ba, Ya € N;,;b € Ny, it
is enough to prove that aba='b~' € N; N N;. Let a € N; = a~! € N; and
beN;j=beGandb ! €G. (ie.) be G,a~! € N;. Since N; is normal in
G,ba'b"' e N;anda € N; = aba b= € Nj .......... (1)

Since b € Nj,b-* € N;. a € N; = a € G,a™t € G. (ie) a € G,b71 € N;.
Since Nj is normal in G,ab"'a™! € N; and b™! € N; = aba"'b"1 € N;
.......... (2)

From (1) and (2), aba™ b € N; N N; = {e} = aba b1 = e = ab =
ba Ya € N;,b € Nj

Remark 2.24 Converse of the above lemma is not true.

Theorem 2.25 Let G be a group and suppose that G is the internal product
of N1, No,....Ny. LetT = N1 X Nox---xX Ny. Then G and T are isomorphic.
Proof: Suppose GG is the internal direct product of Ny, Na,...,N,. Let
x € G. Then x can be unique expressed as x = ajas - - - an,a; € Nj.
Define a map ¢ : T — G by ¢(ai,as,...,a,) = ajaz - - - a, where each
a; € Niyi = 1,2,...,n. Let x = (a1,a2,...,an),y = (b1,b2,...,b,). Suppose
Y(x)=v(y) = (a1-az---an),y = (by-ba---by) = a1 =b1,a2 = ba,...,an =
b, (By the uniqueness of the internal direct products) = (a1, as,...,a,) =
(b1,b2,...,b,) = x =y. .9 is 1—1. Since G is the internal direct products of
Ni,No,...,N, if x € G, then x = (a1, ag, ...,a,) for a; € Nj,as € No,...,a, €
N,. But then ¢(ai,as,...,a,) = a1 -az---a, = z. .. ¥ is onto. Now,
w(.% y) = w((al,ag,...,an) (bl,bz,...,bn)) = w(albl,agbg,...,anbn) = a161 .
agbg -+ - apby, =ay-ag - ap-by-by--- by [By lemma ajbj = bja; for i #
jalbl-agbg---anbn = al-ag---an-bl-bg---bn] = w(al,az, ceny an)w(bl, b2, ceny bn) =
P(x) - P(y). . ¢ is a homomorphism. .°. v is an isomorphism. .. G = T.
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3. UNIT III

Rings
Definition 3.1 Associative ring: A non-empty set R is said to be an
associative ring, If in R, there are defined two operations, denoted by + and
- respectively, such that Va,b,c € R

I.a+beR

2.a+b=b+a

3. a+(b+c)=(a+b)+c

4. There is an element 0 in R>:a+0=aVa € R

5. There is an element —a in R >: a+ (—a) =0

6. a-be R

7. a-(b-c)=(a-b)-c

8 a-(b+c)=a-b+a-c

9. (b+c¢c)-a=b-a+c-a

Example 3.2 R is the set of all integers, positive, negative, zero; (+) is
the usual addition and (-) is the usual multiplication of integers (R, +,-)is a
ring.

Definition 3.3 If there is an element 1 € R >:a-1=1-a =a,Va € R

then we say that R is a ring with unit element. If a-b=1b-a Va,b € R then
we call R is a commutative ring.

Example 3.4 (J,+,) is a commutative ring with unit element

Example 3.5 (2],+,-) is a commutative ring but it has no unit element.
(2Z,®,®) is a commutative ring with unit element

Definition 3.6 A commutative ring R with unit element in which every
non-zero elements has a multiplicative inverse is called a field.

Example 3.7 (J7,®,®) is a field and it is finite hence (J7,®,®) is a finite
field. (Jg,®,®) is a ring. Here 2-3 =0, yet 2 # 0 and 3 # 0. Thus it is
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possible in a ring R, that a - b with neither a = 0 nor b = 0. This cannot
happen in a field. This is an example for a ring R which is not a field. Let

R ={aj1e11 + ai2e12 + agrea1 + agen =
2
Z ajje;; where ay; are rational numbers (i.e.) a;; € Q}.
ij=1

2 2
X=Y= Z Q€45 = Z Bijeij < Qi = ,Bij \V/’l,j = 1,2.

ij=1 ij=1
2 2 2
X+Y =3 ajej+ Y Bijeis = Y (aij+ Bij)eij
ij=1 ij=1 ij=1
2 2 2
= (D aiei)( Y Bijeis) = D vijeis
ij=1 ij=1 ij=1
2
where v;; = Z QirBrj = 1 f1 + B2 and e;j - epe =0 for j #k
ij=1

€ij - eke = €je for j =k.
a=-ej] —eg1 +ep=1-€e71+0-e2+(—1)ear +1-e2
b=-exp+3e2=0-e11+3-e12+0-e21 +1-e2
a-b=(e11+0-e12+ (=1)ear +e22)(0-e11 +3-e12+0-e21 +1-e22)
=0+3-e194+0+0+0+0+0+0+ (~3)ea2 +0+0+0+0+0+ e
=3-e12 — 3 e+ e =3 €12 — 2ex0

. R is a ring. It is called a ring of 2 x 2 rational matrices.

Example 3.8 C=a+i8,a,8 € R. (C,+,") is a field.

Example 3.9 Let Q {ap + a1i + Oéz] + agk/ag, a1, aza3 € R} and X =
ap+ oni 4+ o +azk; Y = o+ Pri+ Poj+ Bk X =Y & a; = f; Vi =
0,1,2,3. Define
X +Y = (ap + ari + agj + azk) + (o + fui + Baj + B3k)
= (a0 + Bo) + (a1 + B1)i + (o + B2)] + (a3 + B3)k

XY = (ag + oni + o + ask)(Bo + Bui + Baj + Bsk)
= apfo + aoPii + aofe] + aoBsk + a1foi — 1P + a1 Pk
+ a1 B3(—]) + 2Bof + aafr(—k) — aafa + aaBsi + asfok
+ asfj + asBa(—1) + asPs(—1)
= (a0Bo — 01B1 — 2B — a3Ps) + (i + o o + 283 — asPa)i
+ (o2 + 2B — 01 B3 + asBr)f + (0fBs + asBo + o fa — aafr)k
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It is a non-commutative ring (i.e) (R,+,-) with multiplicative unit element
is called a Ring of Real Quaternions.

Some special classes of Ring: If R is a commutative ring, thena # 0 € R
is said to be a zero divisor, if there exists an element b € R, b # 0 3: ab = 0.

Example 3.10 In (Zg,®,®),2 is a zero divisor because 3 = 0 such that
2.3 =0. Also, 3 is also a zero divisor.

Definition 3.11 A commutation ring is an Integral Domain if it has no
zero divisor.

Example 3.12 (Z,+,-) us a commutation ring and it has no zero divisor.

Definition 3.13 A ring is said to be divison ring if its non-zero elements
form a group under multiplication.

Example 3.14 (R, +,") is a division ring.
Definition 3.15 A field is a commutative division ring.
Example 3.16 (R,+,-),(C,+,-),(J7,®,®)

Lemma 3.17 If R is a ring, then Va,b € R

1.a-0=0-a=0

2. a(—=b) = (—a)-b= —ab
3. —ax —b=+ab
4. If in addition, R has unit element 1, then (—1)a = a
5 (-1)(-1) =1
Homomorphism

Definition 3.18 A mapping ¢ from the ring R into the ring R is said to a
homomorphism if,

1. ¢(a+b) = ¢(a) + ¢(b)

2. ¢(ab) = d(a) - $(b) Va,b € R
Example 3.19 Let R’ and R’ be any two rings. Define ¢ : R — R’ by
¢(a) =0,Va € R,0 is the identity element in R’ is clearly a homomorphism

and is called a trivial homomorphism. Define ¢ : R — R’ by ¢(a) = a,Va €
R is also a homomorphism.
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Lemma 3.20 If ¢ is a homomorphism of R into R’ then
1. $(0) =0
2. ¢(—a) = —¢(a) Ya € R

Remark 3.21 It need not be true that ¢(1) = 1’ where 1 and 1’ are unit
elements of R and R’ respectively. However if R’ is an integral domain (or)
if R' is an arbitrary but ¢ is onto then ¢(1) =1'.

Definition 3.22 Kernal of a homomorphism: If ¢ is a homomorphism
of R into R/, then the kernal of ¢ devoted by I(¢) is defined as, I(¢) = {a €
R|p(a) = 0,0 is the identity in R'}. I(¢) is a subset of R.

Example 3.23 (i) ¢ : R — R/, defined by ¢(a) =0’ Ya € R. Then I(¢p) =
{a € R|¢(a) =0} = R.

(i)' : R — R, by ¢(a) = a Ya € R. Then I(¢) = {a € R|d(a) = 0,0 is
identity in R} = {0}

Lemma 3.24 If ¢ is a homomorphism of R into R’ with kernal I(¢$), then

1. I(¢) is a subgroup of R under addition,

2. Ifa € I(¢) and r € R there both ar and ra are in 1(¢).

Example 3.25 1. J(v2) = {a + b\/2|a,b € J} which is a ring under
usual addition and multiplication. Define ¢ : J(v/2) — J(\/2) by
d(a + b2 = a — b\/2. Clearly, ¢ is a homomorphism. I(¢) = {a €
R|p(a) = 0',0" is the identity in R'} = {0+ 0v/2} = {0}.

2. Define ¢ : J — J, by ¢p(a) = r where a = ¢"7",0 < r < n. Clearly,¢
is a homomorphism of J onto J,. I(¢) = {a € R|p(a) = 0,0 is the
identity in R'} = {na/a € J}.

3. Let R = {continuous real valued function on close internal [0,1]} un-
der usual addition and multiplication of function. (i.e.) R = {f|f :
[0,1] — R}. Let F be a ring of real numbers. Define ¢ : R — F by
o(f(x)) = f(1/2). Then ¢ is a homomorphism of R onto F.

Definition 3.26 A homomorphism of R into R' is said to be an isomor-
phism if it is a 1 — 1 mapping.

Definition 3.27 Two rings are said to be isomorphic if there is an isomor-
phism of one onto other.

Lemma 3.28 A homomorphism ¢ : R — R’ is an isomorphism iff I(¢) =

{0}
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Ideals and Quotient Rings

Definition 3.29 A non-empty set U of a ring R is said to be a two sided
ideal of R if

1. U is a subgroup of R with respect to addition,

2. For every, u € U,r € R both ru and ur € U.
Example 3.30 (2J,+,) is ideal of (J,+,").

Example 3.31 Let ¢ : R — R’ be a homomorphism then the kernal I(¢) is
an ideal of R. Kernal of any homomorphism in a ring is an ideal of R.

Definition 3.32 Let U be an ideal of R, Define R/U = {a + Ula € R}.
Define + and - as follows, let X =a+U € R/U; Y =b+U € R/U. Then
X+Y =(a+b)+U and X -Y = ab+ U. Under this operation + and -,
R/U is a ring and this is called the quotient ring of R modulo U.

Remark 3.33 1. If R is commutative, then R/U is commutative. Con-
verse need not be true.

2. If R is a ring with unit element, then R/U is also a ring with unit
element.

Lemma 3.34 If U is an ideal of the ring R, then R/U is a ring and is a
homomorphism image of R under the definition ¢ : R — R/U by ¢(a) =
a+U, Va € R.

Result 3.35 1. If U is an ideal of R and 1 € U then U = R.
2. If F is a field then its only ideals are {0} and F itself.

More Ideals and Quotient Rings:

Lemma 3.36 Let R be a commutative ring with unit element whose only
ideals are {0} and R itself. Then R is a field

Definition 3.37 An ideal M # R in a ring R is said to be a maximal ideal
of R if whenever U is an ideal of R such that M C U C R then either
M =U (or)U =R.

Theorem 3.38 If R is commutative ring and M is an ideal of R, then M
is a maximal ideal of R < R/M s a field.

Example 3.39 Let R = J and U be an ideal of R. U consists of all multiples
of a fized integer U = {x|x = tng,ng is fized integer, t € J} = (ng). U is a
mazximal ideal of R < ng is prime = U = (2),(3), (5) are mazimal ideal in
(J,+,).
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Definition 3.40 A ring R can be imbedded in a ring R’ if there is an iso-
morphism R into R'. R’ will be called an over ring (or) extension of R if R
can be imbedded in R’.

Field of Quotients of an Integral Domain

Theorem 3.41 Every integral domain can be imbedded in a field
Proof: This theorem can be proved in the following 4 steps,

1. Specify the elements of the field F.
2. Define (+) and (-) in F.

3. Prove that F' is a field.

4. D can be imbedded in F'

Step 1: Let D be an integral domain. Define M = {(a,b)|a,b € D,b # 0},
where (a,b) represents the quotient elements a/b. In M, we define a relation
~ as follows, (a,b) ~ (¢,d) < ad = be. Claim that ~ is an equivalence
relation

~ is reflexive:

Since ab = ba,Va,b € D['." D is an integral domain and so it is a commutative
ring] = (a,b) ~ (a,b) Va,b € M. . ~ is reflexive.

~ is symmetric:

Let (a,b) ~ (¢,d) = ad = bc = da = c¢b = ¢b = da = (c,d) ~ (a,b). /. ~ is
symmetric.

~ is transitive:

Let (a,b) ~ (¢,d) and (¢, d) ~ (e, f) = ad = bc and cf = de. Now,

cf =de

= bef = bde

= adf = bde("." bc = ad)
= afd = bed

= (af —be)d=0
=af —be=0[.d#0and d,ad — bc € D an integral domain)
=af =be

= (a,b) ~ (e, f)

", ~ is transitive. Hence, ~ is an equivalence relation. Let [a,b] be the
equivalence class in M of (a,b). Let F' = {[a,b]|(a,b) € M,a,b € D,b+# 0}
Step 2:

Define + and - in F as follows: Let [a,b], [c,d] € F. Define [a,b] + [c,d] =
[ad + be, bd) and [a,b] - [¢,d] = [ac, bd)].

Step 3:
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+ is well define:

Suppose [a,b] = [a/,V'] and [¢,d] = [/, d'], then [a,b]+ [c,d] = [d', V'] + [, d].
To Prove: [ad+be, bd] = [a'd' +b' ¢, b/d']. Tt is enough to prove (ad+be)b'd =
bd(a'd + V). Now, [a,b] = [d/,b] = ab =bd......(1)

and [¢,d] = [¢,d'] = ed =d( ......(2)

(ad + be)t'd' = adb'd + beb'd’
=ab'dd + bt/ cd’
= ba'dd' + bb'dc
=bd(ad'd +V'¢)

+ is well defined.
+ is closed:
Let [a,b],[c,d] € F. Then D is an integral domain, bd # 0. Now, [a,b] +
[c,d] = [ad + bc,bd) € F ['.bd # 0]. .-. + is closed.
+ is associative:

([a,b] + [c,d]) + (e, f) = [ad + be, bd] + (e, f)

[

= [(ad + be) f + (bd)e, (bd) f]
= [adf + bef + bde, bdf]
= [adf + (bef + bde), bdf]
= [a(df) + b(cf + de), bdf]
= la,b] + [cf + de, df]

= la, 0] + ([c,d] + [e, f])

‘. + is associative.

Additive identity:

[0,0] € F acts as zero element for this addition. For [a,b] + [0,b] = [ab +
0,b%] = [ab,b?] = [a, b].

Additive inverse:

[—a, b] acts as a identive inverse of [a, b]. For [—a, b]+[a, b] = [—ab+ba, b?] =
[0, b2].

+ is commutative:

[a,b]+[c, d] = [ad+be,bd] = [be+ad, bd] = [c¢b+da,bd] = [c,d]+][a, b] V]a, b]+
[c,d] € F. . + is commutative.

. (F,+) is an abelian group.

- is well defined:

Suppose [a,b] = [d/,b] and [e,d] = [¢,d]. To Prove [a,b] - [¢,d] = [d/, V] -
[,d] (ie.) [ac,bd] = [d'd,b'd]. Tt is enough to prove that (ac)(V/d) =
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(bd)(a'c’). Now,

(ac)(V'd') = act/d’
=bd'ed [ [a,b] = [d, V]
=ba'dc [ abl = ba]
= (bd)(d'd) [ [e,d] = [, d],cd = d].

- is well defined.
- is closed:
Let [a,b],[c,d] € F [b,d € D,b # 0,d # 0 .. bd # 0]. Now, [a,b] - [c,d] =
[ac,bd] € F[.-bd # 0]. .. - is closed.

- is associative:

(la, 0] - e, d]) - (e, )

[(ac)e, (bd) f]
[a(ce), b(df)]
[a, bl[ce, df]
[a, b]([e, d], [e, 1)

". - is associative.
Existence of Multiplicative Identity:
Let [a,a] € F,a # 0 be the multiplicative identity. For, [a,b] - [a,a]
[a%,ab] = [a,b] and for,[a,a] - [a,b] = [a?,ab] = [a,b]. (ie.) [a,b] - [a,d]
[a,a] - [a,b] = [a,b].
Existence of Multiplicative inverse:
Let [a,b] € F,b # 0. Then [b,a] € F,a # 0 is the multiplicative inverse. For,
[a,b] - [b,a] = [ab,ba] = [ab, ab] = [a,a] [. (ab,ba) ~ (a,b)].

- is commutative:
Let [a,b],[c,d] € F. [a,b] - [¢,d] = [ac,bd] = [ca,db] = [¢,d] - [a,b]. .. -is
commutative.
. (F\{0},-) is abelian group.

- is distributive over addition:

[a, 6] - ([c, d] + [e; f])

a,b] - [ef + de, df]
alef + de), b(df)]

(acf + ade), bdf]

(ac)f + (ae)d, (bd) f]

(ac)(bf) + (ae)(bd), (bd)(bf)]
ac,bd] + [ae, bf]

a,b] - [¢,d] + [a, 0] - [e, f]

[
[
[
[
[
[
[
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and

(le.d] + le, f]) - [a, 0] = [cf + de, df] - [a, ]
(cf + de)a, (df )b]

cfa+ dea, dfb]

(ca) f + d(ea), d(fb)]

(ca)(fb) + (db)(ea), (db)(fb)]
ca, db] + [ea, fD]

¢,d] - [a,b] +[e, f] - [a, 0],

[
[
=
[
[
=
=

Hence F is a field.

Step 4:

We have to prove D can be imbedded in F'. (i.e.) We shall find an isomor-
phism of D — F. We first notice that x # 0,y # 0 in D, [az, z] = [ay,y] [
(ax,x) ~ (ay,y) . ary = axy|. Denote [az,x] by [a,1]. Define ¢ : D — F
by ¢(a) = [a,1] Ya in D.

¢is1—1:

Suppose ¢(a) = ¢(b),a,b € D. [a,1] = [b,1] = (a,1) ~ (b)1) = a-1 =
b-l=a=b. . ¢isl—1.

¢ is homomorphism:

¢pla+b) =la+0b1] = [a,1] +[b,1] = ¢(a) + ¢(b) and ¢(ab) = [ab,1] =
[a,1] - [b,1] = ¢(a) - ¢(b). .. ¢ is an isomorphism of D into F. If D has
the unit element 1, then ¢(1) is the unit element of F. Hence D can be
imbedded into F'. Hence the theorem.

Note: Usually, the above field F' is called field of quotients of D.
Polynomial Rings

Definition 3.42 Let F be a field. The Ring of polynomials in the inde-
terminate x, written as F(x), defined as {ag + a1z + asx® + ... + a,z"}
where n € Zt U {0} and the coefficient ag, a1, as, ...,a, are all in F. (i.e.)
F(z) = {ag + a1z + asz? + ... + a,a"|ag, a1, az, ...,an, € F,n € Z+ U {0}}.

Definition 3.43 If p(x) = ag + a1r + a22® + ... + apmz™ and q(x) = by +
biz + ... + bpa™ are in F[x]. Then,

1. p(x) =q(zx) ©a; =b; Vi>D0,
2. p(x) + q(x) = cg + c1z + 222 + ... + c;at where a; + b; = ¢;Vi,

3. p(x) - qlx) = co + 1z + 222 + ... + ¢zt where ¢, = agbg + az_1b1 +
ai—obs + ... + apby.

Note 3.44 ¢y = agbg, c1 = agby + a1bg, ca = agba + a1by + azbs.
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Remark 3.45 F[z] is a commutative ring with unit element under addition
and multiplication of polynomials defined above.

Definition 3.46 Degree of a polynomial If f(z) = apz"+..4+a1x+ag #
0 in Flx] and ap, # 0 ((i.e.) a; = 0 Vi > 0), then degree of f(x), denoted
by deg(f(x)) is n. (i.e.) deg(f(x)) is the largest integer i for which ith
coefficient of f(x) # 0.

Remark 3.47 we do not define the degree of the zero polynomial. We say
a polynomial is constant if its degree is zero.

Lemma 3.48 If f(z) and g(x) are non-zero elements of F|x|. Then degree
of deg(f(x)g(x)) = def(f(x)) + deg(g(x))

Proof: Let f(x) = ag + a1z + asx® + ... + ama™, am # 0 [a; = 0,Y; > m] in
Flz]..... (1)

Let g(x) = bo + b1z + ... + byxp, by # 0 [b; = 0V) > nin F(x)......(2)

Then deg(f(x)) = m and deg(g(x)) = n. By definition, f(x)g(z) = co +
ax + cax? + ... + ¢pa¥, where ¢ = aiby + az_1b1 + .... + agbs. Claim that
Cman # 0 and Vi > m +n,¢; = 0. Now, ¢man = Amanbo + Gmin—1b1 +
man—202 + ... + @mi2bn 2 + Ami1bn—1 + amby + am—1bpg1 + ... + agbyman =
ambn, # 0 = Cyn # 0. (3)[." am # 0 and by, # 0 and ap by, € F.

For every i > m+n = i—j+j > m+n = either j > m (or) i—j > n. Then
one of a; or b;_; is zero, so that ajb,—; = 0 = ¢; = a;bo+a;—1b1 +... +apb; =
Y ajbi_j = 0. For every i > m+n,c; =0......(4)

Hence the claim follows from (3) and (4). .. deg(f(z)-g(z)) = m+n =
deg(f(z)) + deg(g(z)). Hence, the lemma.

Corollary 3.49 (1) If f(x) and g(x) are non-zero elements in F[x] then
deg(f(x)) < deg(f(x) - g(x)). By the above lemma, deg(f(x) - g(x)) =
deg(f(x)) + deg(g(x)) > degf((x))[." deg(g(x)) > 0].

(2) Flx] is integral domain.

Proof: Clearly F[x] is a common ring with unit element. To prove F[z]
is an integral domain, it is enough to prove that F[x] has no zero divisor,
(i.e)product of any two non- zero elements in F[z] is again a non-zero el-
ement in Flz|. Let f(z) = ap + a1 + ... + amz™,ay # 0 in Flz] and
g(x) =bop+bix+ ... +bya™, b, #0in Flz]. . an, # 0,b, # 0 and ay,, by, are
in F[z], am - by, # 0. (i.e) the coefficient of 2™ in f(z) - g(z) is non-zero.
. f(z)-g(x) # 0 in F[z]. Hence Fx] is an integral domain.

Lemma 3.50 Ezistence of division algorithm in F|x|: Given two poly-
nomials f(x) and g(x) # 0 in F[z]. Then there exists two polynomials t(x)
and r(x) in Flz] such that f(x) = t(x) - g(z) + r(z), where either r(z) =0
(or) deg(r(z)) < deg(g(x)).

Proof: Let f(z) = ap + a17 + a22® + ... + apa™,ay # 0 in F[z] and
g(x) = by + b1x + box?® + ... + by, b, # 0 in Flx] = deg(f(z)) = m and
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deg(g(x)) = n.

Case(i): If m = 0 (or) m < n, nothing to prove. For put ¢(z) = 0 and
r(z) = f(x), where f(z), deg(f(x)) < deg(g(x)).

Case(ii): Assume that m > n. we shall prove the theorem by induction on
degree of f(z). If m =0 and n = 0 = f(z)and g(x)are non-zero constant
polynomial. Let f(z) = a # 0,g9(x) = b # 0,a,b € F[z]. Let ab~! = t(x).
Now, a = (ab™1)b # 0 = f(z) = t(z) - g(x) + r(z) , where r(z) = 0. .. The
result is true clearly. Assume that the result is true V polynomial of degree
< m. Consider the polynomial,

fi(z) = f(2) — amb, 2™ tg(x)........... (1)
=ap+ a1 + ... + apz™ — apb, Lym= "(bg 4+ by + box?® + ... + bpa™)

m— nbo m—nb1 _

=ag+ a1z + ... +apz™ —ambn T —ambglx o — amx

= deg(fi(x)) <m—1<m=deg(fi(x)) < m.
.. By induction hypothesis, there exists a polynomial ¢;(x)

that fi(x) = t1(x)g(z) + r(x) where r(z) =0 (or)deg (r 7(x
From (1),

r(z) € F[z] such
) <deg (g(x)).

f(@) = fi(@) + amby 2™ g (x)
= t1(2)g(x) + 7(2) + amby '« "g(z)
= (t1(2) + amby, 2" ")g(2) + 1r(z),

where r(z) = 0 (or) deg r(z) < deg g(z). This proves the existence of
polynomial ¢(x) and r(x)

To Prove: Uniqueness

Suppose, /(z) = t1(x)g(x) +71(z) and f(z) = t(x)g(x) +r(z), where ri(z) =
0 and deg(ri(z)) < deglg(x)) = ti(2)g(x) + ri(x) = Hx)g(x) + r(z) =
[ti(x) —t(z)|g(z) = r(x) — ri(z)......(2)

If r(z) =0 and ri(z) = 0 = t(z) = ti(x). If deg(r(z)) < deg(g(x)) and
deg(r(z) < delo(e)): Then (2) = des(i(a) = (o) = dea(r o) —
r1(x)). This is possible only if ¢ (z) — t(x) = ri(x) —r(z) =0 =
r(x) = r1(z). Hence the uniqueness.

Theorem 3.51 F[z] is euclidean ring.

Proof: F[x] is an Integral Domain with unit element. Define a function d
on a non-zero polynomial f(z) in F[z] as d(f(x)) = deg(f(x)). ... d(f(x)) >
0[." deg(f(z)>0]. (i.e)d(f(x)) is non negative.......... (1)

By Corollary we have proved that if g(z) and f(x) are non-zero el-
ements in F[z], then d(f(x)) < deg (f(z) - g(x)). (i.e) d(f(x)) < d(f(x) -

By the above lemma, given two polynomials f(z) and g(x) # 0 in F[z], then
there exists two polynomials ¢(z) and 7(z) in F[z],>: f(z) = t(x)-g(x)+r(z),
where r(x) =0 (or) deg(r(z)) < deg(g(x))......(3)

From (1),(2) and (3) F[x] is euclidean ring.
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Lemma 3.52 F(x) is a principal ideal ring.

Proof: Clearly, F/(z) is an integral domain with unit element. Let U be the
ideal of F'(z). Suppose u = (0). (i.e.) U is an ideal generated by zero. Then
F(x)is principle ideal ring. Then nothing to prove. Suppose u # 0. Then
there exists an element f(z) € F[x] such that 0 # f(z) in U C F[z]. Claim
that U = (g(x)). Let g(x) be a polynomial of least degree in U. By division
algorithm, there exists t(x),r(z) € Flz] 3: f(x) =t(z) - g(x) + r(x)

where r(x) =0 (or) deg(r(z)) < deg(g(x)).....(1)

Since U is an ideal and ¢(z) € F[z] and g(x) € U,t(x) - g(z) € U and also
flx) e U =t(x) g(x)— f(x) € U = r(x) € U. " g(x) is a least degree
polynomial in U,deg(r(x)) cannot be less than deg(g(z)). .. r(z) = 0.
. f(z) = t(x) - g(x) € U. Every polynomial of F[z] can be written as a
multiple of g(z) = f(x) € (9(z)). ... U = (g(z)). Hence the claim. . U is
a principle ideal in F[z] and U is arbitrary. ... F[x] is a principle ideal ring.

Lemma 3.53 Given two polynomials f(x),g(x) in Flx] they have a great-
est common divisor which can be realised as d(z) = N(x) f(x)+11(z)g(zx) for
some polynomial \(x), 11 (z)

Proof: Let S = {s(z)f(x) + t(x)g(x)|s(x) and t(x) € F[z]}. Then F[z] is
a ring with unit element. Let s(z) = 1;¢(z) = 0. Then f(x) € S. Similarly
g(x) € S. So, S # ¢. Let hq(z), ho(x) € S. Then, hy(z) = si(x) f(x)+t1(z)-
9(@); ha(x) = s2(x) f(x) + ta(x)g(x), where s1(x), s2(x), t1(x), t2(2) € Flz].
Now,

hi(z) = ha(z) = [s1(2) f(2) + t1(2)g(2)] = [s2(2) f (x) + t2(2)g(2)]
= [s1(2) — s2(2)]f (2) + [t2 () — t2(2)]g(2),
where s1(x) — s2(z), t1(x) — t2(z) € Flx]
= s(x)f(x) — t(x)g(x),
where s(x) = s1(x) — s9(x), t(x) = t1(x) — ta(x)

p(x) - h(z) = p(x)[s(x) f () + t(z)g(x)]
= (p(x)s(x)) f(z) + (p(x)t(x))g(x),
where p(x)s(z) € F(x) and p(x)t(z) € F(z)

o p(z) () € S (2)

From (1) and (2), S is an ideal. - F[z] is an euclidean ring. .. S is
a principle ideal. S = (m(x)) for some m(x) € S. m(z) = so(z)f(z) +
to(x)g(x), where so(x) and to(z) € Flz]......... (*)

Since f(z) - g(x) € S, f(x) = a(x) - m(z) = m(z)/f(z) and g(z) = b(z) -
m(z) = m(z)/g(x).
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Remark 3.54 A polynomial over an arbitrary ring is not a principle ideal
ring.

Proof: The ring polynomial J[z]| over ring of integers is not a principle ideal
ring.

Claim 1: The ideal (2, x) of J[x] generated by (2, z) of J[x] is not a principle
ideal ring. Suppose (2,z) is principle ideal in J[z|, there exists g(z) €
J(x) 2:(2,z) = g(z) [ 2 € (2,2) = 2 € (g(x))]. .. There exists ¢(z) €
J[x] such that 2 = ¢(x) - g(x).....(1)

x € (g(x)), there exists ¢/(x) € J[z] 2: x = ¢/(x) - g(x).....(2)

From (1) and (2),

(1) = 2z = ¢(z) - g(x)

(2) = 2z =2-¢/(z)g(z)

=z ¢(x) g(z) =2 ¢()g9()

= (z-¢(z) =2 ¢(2))g(z) =

= xd(x) = 2¢'(z) [ g(x) # 0 and J[z] is integral domain]

= coefficient of ¢(z) must be an even integer. .. ¢(z) = 2h(z) = h(z) €

From (1) and (3), 2 = 2h(x) - g(2) = 1 = h(z) - g(z) = 1 € (9(x)) = J[z] =
(g(x)) = 2,2) [ 1eU=>U = R]. *. Every element of J[x] belong to
(2,2) .....(A)

Claim 2: 1 ¢ (2,z)

Suppose 1 € (2,z) then by Lemma [3.53] [d(z) = \(z)f(z) + li(z)g(x)] =
1 = 2p(x) +xq(z), p(z), q¢(z) € J[z]. Let p(z) = ag +ar1x + azx® + ...;q(z) =
bo+bix+box?+... Now, 1 = 2[ag+a1x+agz?+..]+x[bo+ b1z + b +...] =
1 =2ap = a9 = 1/2 ¢ J =<« Hence, the claim(2). 1 ¢ (2,z) which is a
=<to (A). . (2,z)isnot a principle ideal of J[z]. .. J[z] is not a principle
ideal ring

Definition 3.55 A polynomial p(x) € F[z| is said to be irreducible over
F[z] if whenever p(x) = a(z)b(z) with a(x),b(x) € Flz|. Then one of a(x)
or b(z) has degree 0. (i.e.) a constant.

Example 3.56 Let f(z) = 22 +1 = (z +i)(x — i) is irreducible over real
field but not over complez.

Lemma 3.57 Any polynomial in F[z] can be written in a unique manner
as a product of irreducible polynomial in F|x]

Proof: Let f(x) be a non-zero polynomial in F[z]. Then clearly, deg(f(z)) >
0. Let a be the coefficients of the leading terms of f(z). Now, when f(z) is
of degree 1, it is of the form ag 4+ ax, where ag,a € F and a # 0. We may
also write it in the form f(x) = a(a=tao+ z). Clearly, a tag + x is a monic
irreducible polynomial in F'[z] and a is an element of F'. So, when f(x) is
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a polynomial of degree 1, the theorem follows. Let us assume the theorem
to be true V polynomials of degree less than that of f(x) and by induction
we must show it to be true for f(x). Since the coefficient of the leading
term of f(z) is a, we may write f(z) = afi(x), where fi(z) = a~'f(x)
and therefore fi(z) is a monic polynomial. Now, if f(x) is irreducible,
then so is fi(z) and so in this case the theorem will follow. On the other
hand, if f(z) is reducible we have, f(z) = g(x) - h(x), where g(z) and h(z)
are non-unit, non-zero polynomials in F[z|. ‘.- F[z| is a polynomial over
the field F, deg[g(z) - h(x)] = deg(g(x)) + deg(h(z)) and since each one of
g(x) and h(x) is a non-zero, non-unit polynomial in Flz]. deg(g(z)) > 0
and degh(z) > 0 and therefore, deg(g(z)) < deglg(z) - h(z)] = deg(f(z))
and deg(h(z)) < deglg(z) - h(z)] = deg(f(z)) [By Corollary [.49]. So by

assumed hypothesis, we can write g(x) = aipi(x)p2(z) - - - pn(z), where
each p;(z) is monic irreducible in F[z]| and h(z) = aqi1(2)q2(z) - - - gm(x),
where each g¢j(z) is monic irreducible in Fz]. .. f(z) = g(z) - h(z) =

ajagpr(z)p2(z) - - - pp(x)qi(z) - - - gm(x) =product of finite no of irreducible
polynomial in F[z], where each p;(z) and ¢;(z) are monic irreducible in
F[z]. Thus the theorem holds for f(z) and therefore by induction hypoth-
esis V polynomials in F[z]. Now in order to show that this decomposition
is unique, let f(x) = ap1(2)p2(x) - - - pm(z) = aqi(v)q2(x) - - - gn(x), where
each p;(z) and ¢;(z) are the monic irreducible polynomials in F[z]. Then
PDPAD) -+ Pa(2) = D (2)0(2) - G (1),

It is clear that pi(z)/p1(z)p2(z) - - - pm(z) and so from (1) we have,
p1(x)/q1(x)g2(x) - gy (x). But this means that pj (z) must divide atleast one
of g1(z)ga2(x) - - - gu(x). .- Flx] is commutative ring, we may assume that
p1(x)/qi(x). Now, pi(x)/qi(x)and pi(x),q1(x) are irreducible polynomials
in Flz]. = pi(x) and ¢i(x) are associates. = ¢i(x) is unit times p;(z).
= q1(z) = up1(z) where w is a unit in F[z]. [. units in F[z]| are constant
polynomial] = ¢1(x) = p1(z) [.  ¢i(x) and p1(z) being monic, we must have
u = 1]. Consequently, p1(2)p2(z) - - pm(7) = q1(z)g2(z) - - gu(z) [ p1 = 1]
and therefore, pa(z)ps(x) - pm(z) = g2(z)g3(x) - - - gn(z) [canceling p;(x)].
Now, we can repeat the above argument on this relation with ps(x).

We continue the above process. Now, if n > m then after m steps the LHS
of (1) will become 1 and the RHS of (1) will reduce to a product of a certain
number of g(x)'s (the excess of n over m). But each ¢;(x) being irreducible
polynomial, the product of there g(x)’s will therefore be a polynomial of
degree not less than 1 and therefore, this product can never be 1. Thus, a
=<« consequently n and m. Similarly, by changing the rules of p(z) and
q(x) we have m and n. Hence m = n. Also in the above process, we have
shown that every p(z) is equal to ¢(z). Hence the decomposition is unique
except for the order in which the factors occur.

Lemma 3.58 The ideal A = (p(x)) in F[z] is a mazimal ideal < p(x) is
irreducible over F'.
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Proof: Suppose A = (p(x)) is a maximal ideal F[z]. (i.e.) 0 # p(z) is
maximal in F[z]. To Prove: p(x) is irreducible over F. Since the ideal
generated by p(z) is maximal, (p(z)) # F[z] and p(x) is prime (*.- Every
maximal ideal is prime). Consider the polynomial f(x), g(z) € F|x] 3: f(z)-
g9(x) € (p(x)) = f(x) € p(x) (or) g(x) € p(x) = f(x) = t(z)p(x) (or) g(z) =
H(2)p(x) = p(a)]£(z) (or) p(x)/f(2). Thus, p(x)/f(z) - o(z) = p(x)/ ()
(or) p(z)/g(x) = p(x) is irreducible over F. Conversely, suppose that p(z)
is a maximal ideal in F'[z]. To Prove:A = (p(x)) is a maximal ideal in F'[z].
Suppose there exists an ideal N of F[x] 3: (p(z)) C N C Flx]........ (1)
Since N is in F'[z], which is a principal ideal ring, N = (g(x)), g(z) € Flz].
From (1), (p(z)) C (9(2)) C Flz] = (p(x)) C (9(x)) = (p(2)) € (9(x)) =
(p(x)) = t(z) - g(x),t(x) € Flx] - p(x) is irreducible either deg(t(x)) = 0
or deg(g(x)) = 0. Suppose deg(g(z)) = 0. Then g(z) is a non-zero constant,
say g(x) = a,a #0in F. - F is a field, a = g(z) is a unit in F[z]. Then,
N =F[z]| [ g(x) :F[x]] ..... (2).

Suppose deg(t(z)) = 0. Let ¢(x) = b, a non-zero element in F. . g(z) =
bp() ($)€(())=>NC(())‘But(p(x))QN

: = (p(x)). Thus, p(xr) € N C Flz] = either (p(z)) = N (or) N =
F[ ] . (p(x)) is maximal in Fz].

Polynomials over the Rational Field:

Definition 3.59 The polynomial f(x) = ag+ a1z +asx® + ...+ anx”, where
ag, a1, ---, ay are integers is said to be primitive if the GCD of ag, a1, ..., an
is 1. For example, f(x) = 3+ 5z + 722 is primitive.

Definition 3.60 A polynomial in which the leading coefficient is 1 is called
as monic polynomial. For example, f(x) = 2 + 3z + 422 + 2 is monic
polynomial.

Definition 3.61 A polynomial is said to an integer monic if all the coef-
ficients are integers and the leading coefficient is 1. For example, f(x) =
5 — 6x + 1222 4 22 is integer monic polynomial.

Lemma 3.62 If f(z) and g(x) are primitive polynomials, then f(z) - g(z)
is a primitive polynomial. [product of any two primitive polynomial is again
primitive].

Proof: Let f(z) =ap+ai(x)+...+apz™ and g(x) = bg+b1(x) + ... + by x™
be primitive polynomials. To Prove: f(z) - g(x) is primitive. Suppose not,
(i.e) f(x)-g(x) is not primitive. Then all the coefficient of f(z)- g(x) would
be divisible by some integer > 1. Hence some prime number p, p divides all
the coefficient of f(z) - g(x). - f(x)is primitive, p does not divides all the
coefficients of f(z). Let a; be the first coefficient of f(x) such that p does
not divides a;. [(i.€)p/ag,p/a1, ..., p/a;—1]....... (1)

Similarly, -.© g(x) is primitive, p does not divides all the coefficients of
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g(z). Let by be the first coefficient of g(x) such that does not divides by.
[(i.e.)p/bo, /b1, ..., p/bi-1] -..... (2)
Cjt+k = (ajJrkbO + aj+k,1b1 + ...+ aj+1bk,1) + ajbk
—}—(aj,lka + ...+ albj+k_1 + aobj+k) ....... (3)
By our choice of aj,p/ag,p/ar, ...,p/a;—1

= p/aobj+k + albj+k+1 + ..+ aj_lbk+1 ....... (4)
By our choice of by, p/bo, p/b1, ..., p/br—1
= p/aj+kbo + (Ij+k+1b1 + ..+ aj+1bk_1 ....... (5)

But p/cjir = p/(¢jtr) — (aobjtk + arbjip—1 + ... + aj-1bk+1)
—(aj_;,_kb() + aj+k+1bl + ...+ aj+1bk_1)
= p/ajby [by (3)] = p/a; (or) p/by[." p is prime]
=< to p does not divides a; and p does not divides by. .. Our assumption
is wrong. Hence, f(x) - g(z) is primitive. Hence, the lemma.

Definition 3.63 Content of the Polynomial Let f(x) = ap + a1z +
asx?® + ... + apx™, where a;’s are integers. The content of the polynomial
is the GCD of ag,a1,as,...,a, and it is denoted by c(f). (i.e.) c(f) =
(CL(), ai, as, ...an).

Example 3.64 Letp(x) = 5+102+25224+302%. Then c(f) = (5,10,25,30) =
5.

Remark 3.65 1. Any polynomial with integer coefficient is said to be
integer monic if the content of f(x) = 1.

2. Any polynomial p(x) with integer coefficient can be written as p(x) =
d(g(z)), where d is the content of p(x), and g(x) is primitive.

Example 3.66 p(z) = 3 + 6z + 922 — 122% = 3(1 + 22 + 322 — 42?) =
c(p(z))g(x), where c(p(x)) = 3 and g(x) = 1 + 2x + 322 — 423, primitive.

Theorem 3.67 Gauss Lemma If the primitive polynomial f(x) can be
factored as the product of two polynomials having rational coefficient, it can
be factored as the product of two polynomials having integer coefficients.
Proof: Suppose f(x) = u(z) - v(x), where u(z) and v(z) are polynomial
having rational coefficients. Let u(z) = 2 + (§-)z + (‘;—;)332 + ot (322",
where a;’s and b;’s are integers and b;’s # 0, Vj. Claim that f(z) = $A(z) -
l1(z), where a,b are integer and A\(z),l;(z) are primitive polynomial with
integer coefficients.

w(®) = g [a0(baba - - - bn) + ax(bobabs - - - bp)x + az(bobiby - - - by)x? +
e+ an(bgble s bn_l)l'n] = %[Co +c1x + 621'2 + ..+ cnx”] ....... (1)
where m = bobiby - - - bn; co = ag(brba---by); 1 = ai(bobabs -« by);- -5 cp
an(bobibe - - -byp—1). - any polynomial f(x) can be written as f(x) = d-g(x
where d is content of f(x) and g(z) is primitive. co+c12+cox? +... +cpa™
d\(x), where d = (cg, ¢1, C2, ..., ¢p) and A(x) is primitive. .*. From (1), u(z)

~—
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%)\(az), where d = (cp,c1,¢2,...,¢n), A(x) is primitive and d and m are
integers. Similarly v(z) = %ll(x), where dy and m; are integer and [;x is
primitive. . f(z) = u(z) v(z) = L. T‘i—ll M)l (z) = gA@) 1 (2). o (2)
where a = dd; and b = mm; are integers = bf(z) = aA(x)li(x)....... (3)
= c(bf(x)) = c(aA(@)h(2)) = be(f(2)) = acA(@)lr () = b= @ (4)
[ f(x),l1(z), ANz ) are primitive, their content is 1]. From (2) and (4),
f(x) = Ma)li(z). .. f(z) can be factored as a product of two polynomial
having two integer coefﬁcient. [A(z) and {1 (z) are polynomial having integer
coefficient]. Hence the theorem.

Corollary 3.68 If an integer monic polynomial factors as the product of
two non-constant polynomials having rational coefficients then it factors as
the product of two integer monic polynomials.

Proof: f(x) is an integer monic polynomial and factored as a product of
two non-constant polynomials having rational coefficients. (i.e.) f(z) is
a primitive polynomial factored as the product of two polynomial having
rational coefficients. By Theorem f(x) can be factored as product of
two polynomials having integer coefficients. Let f(x) = p(x) - r(z), where
p(z),r(x) are polynomial with integer coefficient. Let p(x) = aog + a1z +
asx? + ...+ apx™ and r(x) = bg + b1x + box® + ... + by, z™, where a;’s and b;’s

are integers. .© f(z) is monic, leading coefficient of f(x) is 1. Then leading
coefficient of p(x) - r(z) = 1 = a, = by, = 1 = either a,, = by, = 1 (or)
an = by, = —1. . In either case, p(x),r(x) are integer monic polynomials.

Hence f(x) can be factored as the product of two integer monic polynomials.
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4. UNIT IV

Vector Spaces

Definition 4.1 Vector Space: A non empty set V is said to be a vector
space over a field F' if V' is an abelian group under(addition) and if for every
a € F,v eV, there is defined an element av in V subject to

1. ofv+w) = aw+ aw

2. (a+p)=av+ pv

3. a(Bv) = (af)v

4. 1-v=vVa,B€F, vyweV

where 1 represents the unit element of V. under usual multiplication.

Remark 4.2 Aziom 1 states the fact that the multiplication element of V
for fized scalar o defined homomorphism of abelian group V' into itself if
a # 0 this homomorphism can be shown to be an isomorphism.

Example 4.3 (i) Let F be a given field. Let K be a field which contains
F as a subfield. We consider K as a vector space over F. For (K,+) is
an abelian group, for a« € Fv € K,av € K. Azioms 1,2 and 3 for K
as a vector space over F are the consequences of right distributive law, left
distributive law, and associative law respectively which holds for K as a ring
. Since 1 is the identity element in K, the Axiom 4 follows from it.

(i) (Le)t F be a field Let V = {(a1, ag....ay) |y € F}= all order of n tuples
=\,

Example 4.4 (R, +,-) is a field. V = {(a1,)|e; € R*} = R®, V =
{(a1, 2, 03)|a; € R*} = RO,

Example 4.5 (Q*,+,-) is a field. V = {(c1,09)la; € Q*} = Q® and
V = {(a1, a2, a3)|e; € Q* = QV).

Example 4.6 Let F be a field V = Flx]= set of all of polynomial x over
F = {ap+a1r + asx® + ... + apa™|o; € F}. Then V is a vector space over
F.

Definition 4.7 Subspace: Let V be a vector space over a field F' and if
W is a subset of V.. Then W is a subspace of V, if under the operations
of V., W itself forms a vector space over F'. FEquivalently W subspace of V
whenever wy,we € W,a, 8 € F implies awy + Pwo € W.
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Example 4.8 Let F be a field. Let V,, be the set of all polynomials of
degree less than n. Under natural operations for polynomials of addition
and multiplication. V, be the vector space over F', which is a subspace of
V = Flz] = {ag + o170 + aox?® + ... + apz™ + ...|a; € F}.

Definition 4.9 If U and V are the vector spaces over F' then the mapping
T of U into V is said to be a homomorphism if

() (w1 +u2)T = uiT + uoT,Vur,us € U and o € F

(ii) (cuy)T = a(uiT)

if T, in addition is 1—1 we call it an isomorphism. Ker T = {u € UluT =0,
identity element of addition in V'}.

Remark 4.10 T is an isomorphism iff Ker T = {0}

Definition 4.11 Two vector spaces are said to be isomorphic if there is an
isomorphism of one onto the other.

Lemma 4.12 Let V is a vector space over F
1. (0)=0 fora€eF,
2.00v=0 forvelV,
3. (—a)v=—av, forace FveV,
4. ifv£0thena-v=0=a=0.

Lemma 4.13 If V is a vector space over F and W is a Subspace of V.
Then V/IW = {v+Wlv € V}. Let vy + Wyua + W € V/W and a € F.
Define (i) (vi + W)+ (va+ W) =v; + v + W,

(1) (11 + W) =av +W.
Under the operation defined above under the operation V/W is a vector space
and is called quotient space of V/W.

Theorem 4.14 Fundamental theorem for vector homomorphism:
If T is a homomorphism of U onto V with kernal W. Then V is isomorphic
to U/W conversely if U is a vector space and W is a subspace of U. Then
there is a homomorphism of U onto U/W.

Definition 4.15 Let V' be a vector space over F and let Uy,Us,...,U, be
subspace of V.. Then V is said to be the internal direct sum of Uy, Us, ..., U,
if every element v € V' can be written in the unique way as v = uy + ug +
e F Up,u; € UL

Remark 4.16 Let V be any vector space over field F'. Then V itself and
subset of V' consisting of 0 vector only are the trivial subspace of V. They
are improper subspace. For example let V = {(a1, a2, a3)|a1, az, a3 € F}
and W = {(a1,a9,0)|ay, a0 € F}. Then W is a subspace of V
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Linear Independent and Spaces:

Definition 4.17 Let V be a vector space over F' and if vi,vs,...,v,. Then
any element of the form ajvi + asvs + ... + apv, where o; € F is a linear
combination over F of vi,va, ..., vp.

Definition 4.18 Let V be a vector space over F and S be any non-empty
subset of V.. Then the linear span of S, L(S) is the set of all linear combi-
nation of finite sets of element of S. (i.e.) L(S) = {a1v1 + agva + ..... +
QU [U1, V2, ...y Uy 08 an arbitrary finite subset of S and oy, g, ..., is any
arbitrary finite subset of F'}.

Lemma 4.19 L(S) is a subspace of V.

Lemma 4.20 If S, T are the subset of V then,
1. SCT= L(S) C L(T),
2. L(SUT)=L(S)UL(T),
3. L(L(S)) = L(95).

The vector space V is said to be finite dimensional over F if there is a finite

subset S in V' such that V = L(S5).

Example 4.21 Let V = F®) = V3(f) = {(a1, a2, a3)|a1, a2, a3 € F}. Let
S ={(1,0,0)}; L(S) = {(a,0,0)[a € F} C V.

Example 4.22 V = F®): § = {(1,0,0),(0,1,0)}. L(S) = {(a1, az,0)|a1, as €

Example 4.23 Let V = F®) and S = {(1,0,0),(0,1,0),(0,0,1)}. Then
L(S)=V.

Example 4.24 V = ajv; + ... + apv,. Let v = (a,b,c) € FG) = v,
(a,b,¢) = a(1,0,0) 4+ b(0,1,0) + ¢(0,0,1) = (a,b,c) € L(S) = V C L(S),
but L(S) C V. -.L(S)=V.

Definition 4.25 IfV is a vector space and if vi,va, ..., v, are in V. We say
that they are linearly dependent over F if there exist element A, Ao, ..., Ay
in F' not all of them zero(0) such that A\jvi + ... + Ayv, = 0. If the vectors
are not linearly dependent over F they are said to be linearly independent.

Remark 4.26 Two vectors are linearly dependent one of them will be the
scalar multiple of other.
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Example 4.27 In the vector space F™ = Vi (F) = {(a1, ag, ..., ) }. Then
the vector space S = {eq, ea, ...,e, } wheree; = {1,0,...,0}; ea = {0,1,0,...,0};
oy en = 40,0,...,1} is linearly independent. Let A1, Aa,...; A\, € F. Then
Aert+Xroest... 4+ e, =0 = )\1(1,0, ,O)—{-)\Q(O, 1, ,0)—|—+)\n(0,0, ey 1) =
0= ()\1,0, ...,0) + (0,)\2, ...,0) + (0,0, s An) =0 = ()\1,)\2, ;/\n) =0=
A =0,A=0,...\, =0.

Remark 4.28 If the set of vector S = {v1, va.....vn } is linearly independent
then none of the vector vi,va, ..., v, be 0.

Example 4.29 Show that the set S = {(1,2,4),(1,0,0),(0,1,0)(0,0,1)} is
a linearly dependent subset of vector space R®) where R is the field of Real
numbers.

Solution: Let \; = 1,\y = —1,A\3 = =2, Ay = —4. Then 1(1,2,4) +
(—1)(1,0,0)+(-=2)(0,1,0)+(—4)(0,0,1) = (1,2,4) +(—1,0,0)+ (0, —2,0) +
(0,0,4) = (0,0,0). .. Given set is linearly dependent.

Lemma 4.30 Ifvy,vs,...,v, are linearly independent then every element in
their linear span has a unique representation in the form, Ajvy + Aovo + ...+
AnUp, With A\; € F.

Result 4.31 If vy, v9,...,v, € V then either they are linearly independent
or some vy is the linear combination of the preceding one’s. If V is a finite
dimensional vector space then it contains a finite set vy, va, ..., v, of linearly
independent elements whose linear span is V.

Definition 4.32 Basis: A subset S of a vector space V is called a basis
of V if S consists of linearly independent elements and V = L(S). Let set
S consisting of vectors e; = (1,0,0),e2 = (0,1,0),e3 = (0,0,1) is a basis of
FO),

Result 4.33 1. IfV is a finite dimensional vector space and if vy, va, ..., Uy
is span V' then some subsets of vy, v, ..., Um forms a basis of V.

2. If v1,v9, ..., Um 18 a basis of V over F if wi, wa, ..., wy, in'V are linearly
independent over F' then m <n.

3. If V be a finite dimensional vector space over F then any two ba-
sis of V' have the same number of elements. For example, S1 =
{(1,0,0),(0,1,0),(0,1,1)} and S2 = {(1,0,0),(1,1,0),(1,1,1)} are
two basis of the vector space F(3).

4. F) = pm) iffn = m,.

5. If V be a finite dimensional vector space over a field F' then V = F(™)
for a unique integer n, infact n is the number of elements in any basis
V over F.
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Definition 4.34 Dimension: The dimension of V over F is the number
of elements in any basis of V over F'. For example, dim(F(3)) = 3 and

Result 4.35 Any two finite dimensional vector space over F of the same
dimension are isomorphic. dimp(Vi) = dim(V1) = n and dimp(Va) =
dim(Va) =n = V) 2 Vs,

Definition 4.36 Dual space: The set of all homomorphism of U into V
will be written as Hom(U, V).

Lemma 4.37 Let V,W be any two vector space over the field F. Hom(V, W)
be the set of all vector space homomorphisms of V into W. Then Hom(V, W)
is a vector space over F. Let S, T € Hom(V,W). Define V(S+T) =
VS 4+ VT under this operation Hom(V, W) is a vector space.

Result 4.38 1. If V and W are of dimensions m and n respectively over
F then Hom(V,W) is of dimension mn over F. If dimp(V) = m then
dimp(Hom(V,V)) = dimp(V)dimp(V) = m -m = m?.

)
2. dimp(Hom(V, F)) = dimp(V) x dimp(V) =m x 1 =m.
3. dimp(Hom(Hom(V, F),F)) = dimp(Hom(m, F)) = m.

Definition 4.39 IfV is a_vector space, then its dual space is Hom(V, F),
We shall denote this as by V.

Definition 4.40 Any elements of‘A/ is called a linear functional on V into
F

Remark 4.41 if V is not finite dimensional V s usually too large and
would be of.

Note: V = Hom(V, F).

Result 4.42 1. If V is a finite dimensional an v # 0 in V then there is
an element F € V such that F(v) = 0.

2. If V is a finite dimensional vector space then there is an isomorphism

of V' onto V.

Definition 4.43 if W is a subspace of V then annihilator of W, A(W) =
{feV/f(W)=0VYweW}.

Result 4.44 1. A(w) is a subspace of V.
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2. dim(A(w) = dim(V') — dim(W).
3. VJAW) = W.

4. A(AW)) = W.

Linear Transformation:

We know that Hom(V, W), the set of all vector space homomorphisms of V'
into W is a vector space over the field F. In this section we are very much
interested on Hom(V, V).

Definition 4.45 An associative ring A is said to be an algebra over F if A
is a vector space over a field F' such that a,b € A and o € F, a(ab) = (aa)b.

Remark 4.46 FEvery algebra A over a field F is a vector space over a field
F. Is the converse true?

Result 4.47 Hom(V,V) is an algebra over F.

Proof: Let T}, T> € Hom(V, V). Define 4+ and - as follows, T1 +T5 : V — V
by v(T1+T5) = vI1+vTy and T1-Th : V — V by o(Th - To) = (vIh)Te Yo € V.
We shall first prove that Hom(V, V) is a ring. Let o, 5 € F and vj,v9 € V,

(av1 + Bu2) (11 + 1) = (awy + Bu2) T + (avr + Bu2) 1>
= (av1)T1 + (Bv2)T1 + (av1)Ts + (Bu2)Th
= a(viTy) + B(veTy) + a(viTs) + f(veTh)
= a(vn1T2) + B(veT1 + v2T3)
= a(vi(T1 + T2)) + B(va(Th + T2))

ST+ Ty € Hom(V,V) = + is closed.

Let T1, 15,15 € Hom(V, V) Then T1+(T2—|-T3) = (T1+T2)+T3 V11,15, 1T5 €
Hom(V,V) = + is Associative.

0:V — V defined by vy = 0 Yv € V serve as additive identity element. For
0+T1=T1+0=T,VTy € Hom(V,V).

Inverse of T} is —T1 defined by, v(—T1) = —(vT1) Vv € V. Since T1+(—=T1) =
(=Th +Tv) = 0 for v(Th + (=T1)) = vI1 + v(-T1) = vT1 + (—vTy) = 0.
Similarly ’U(—Tl + Tl) =0=1Ty + (—Tl) = (—Tl) +T7 =0.

o(Ty + Ty) = vTh + vTh [vT1,vTy € V and (V,+) is abelian] =vT, + 0T} =
U(TQ + Tl) =T+ Ty =T5+1Ty. . + is commutative.

Hence (Hom(V,V),+) is abelian group. Now,

(v1 +v2)(T1 - T2) = ((v1 +v2)T1) - T
= (nTh +vo11) - T
= (nT1)Ts + (v211)T>
=v1(Th - Tz) + vo(Th - Ts)
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(av)(Th - T2) = ((av1)T1) - T?

(v1(T1 - T2))

T - Ty € Hom(V, V) Clearly Tl( Tg) = (Tl 'TQ)T3 VTl,TQ,Tg S
Hom(V,V). . - is associative.
T (To+13) =T To+T1 - T3; (1 +T3) T3 =Ty - T3+ T - T35 VI, 12,15 €
Hom(V,V). - is distributive over F. ... (Hom(V,V),+,-) is a Ring.
Now, let T1 - To € Hom(V, V). To Prove: a(T1 + Ts) = o1 + oT5.
v(a(Th +T3)) = a(v(Th + T2))
a(vTy + vTs)
a(vTh) + a(vlh)

=v(aTh) +v(aTly)
=v(aTy) +v(ads),Yv eV
= a(Ty +T) = o1y + aTs, Ya € F and Ty, Ty € Hom(V,V).

To prove:(a + )11 = o117 + BT

Let v e V,u((a+ B)Th) = (o + B)(vTy)
v(aTy) + B(vTh)

v(aTy) + v(BTy)

v(aTy + BT1)

= (a+ B)T1 = a1y + BT, Ya,B € F and Ty € Hom(V, V).

To Prove: o(ST1) = (af)Th

v(a(BTh)) = a(v(BT1))
= a(B(v11))
= af(vTy)
=v(aB)Th
= a(pT1) = (af)Ty Yo, f € FandT; € Hom(V, V).

v(1-T7) =1-(vTh) =vTh = 1.7y =11 VI € Hom(V, V). Hence Hom(V,V)
is a vector space over a field F. Let v € V,

v(a(TiTy)) = a(v(Th 1))
= a((vT1)T3)
= (vTh)(aT>)
= (vTh)(aT3)
= o(T\T) = Ti(aTs).
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Now,
v((aT1)T3) = (v(aT1))T?
= a((vT1))T2
= a(vT1T3)
= v(a(vT1Ty))
= (a1)Th = a(T1T?)

a(ThTy) = (o11)Ty = Ti(aTs),a € F and T1,To € Hom(V, V).
. Hom(V,V) is an algebra over F.

Remark 4.48 For convenient we shall write Hom(V,V') as A(V). When-
ever we want to emphasis the role of field. We shall denote it by Ap(V').

Definition 4.49 A linear transformations on V over F is an element of
Ap(V). (i.e.) A linear transformations is a vector space homomorphism of
V' onto itself.

Remark 4.50 We shall refer A(V) as a ring or algebra of linear transfor-
mation on V.

Lemma 4.51 If A is an algebra with unit element over a field F. Then
A is isomorphic to a sub-algebra of A(V') for some wvector space V over
F.(Analogue of Cayley’s theorem for algebra)

Proof: Since A is an algebra over F. It must be a vector space over F.
To prove: A is isomorphic to sub-algebra of A(V'), for some vector space V.
Since A is a ring as well as a vector space, we choose V = A. Let a € A,
define T, : V(A) — V(A) by vT, = va Yv € V. Claim T, is a linear trans-
formation on V. (i.e.) T, is a vector homomorphism. Let vi,v2 € V and
a€cF

Now, (v1 4+ v2)Ty = v1 = v1a + vaa = V1T, + voTy....... (1)

(av1)Ty = (avr)a = a(via) = a(viTy)........ (2)

From (1)and (2), T, € Hom(V,V) = A(V). (i.e.) T, is a linear transforma-
tion on V. Hence the claim.

Define a mapping ¢ : A — A(V) by ap = T, Va € A. Let a,b € A and
a € F. First, to prove that Ty = T, + Tp. For v € V,uT, 4, = v(a+b) =
va+vb = vl +vTy Vv € V = Ty = Ty+Ty. Next, to prove that Ty, = a1y
For any v € V, 9T, = v(aa) = a(va) = a(vl,) Yv € V = Ty, = aT,. From
Totp = To + T, we have, = (a+ b)) = ap + bip......... (3)

From Tyhe = Ty = (a)y = alay))........ (4)

From (3) and (4), ¢ is a homomorphism of A into A(V).

To prove 9 is 1 — 1, it is enough to prove that Kery = {0} where 0 is the
identity element in A(V). Let a € Kery
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=ap=0Va€ A

=T,=0Vac A

=vl,=0Vac A

=va=0,Vae AVveV

=ea=0[.V =A(V) contains the unit element]
=a=0

o Kery = {0}

. is 1 — 1, clearly 4 is onto. Hence 9 is an isomorphism of A onto A(V).
Hence A is isomorphic to some algebra of A(V).

Lemma 4.52 Let A be an algebra with element over F and suppose that A
is of dimension of m over F' then every element in A satisfies some non-
trivial polynomials f(x) of degree almost m.

Proof: Given dim A = m. ... Any set of m + 1 elements in A is linearly
dependent. Let a € A. Then e,a,a? a?,...,a™ are linearly dependent. ..
there exists scalar ag, o, ..., € F, not all zero such that age + aja +
a2a? + ...+ apa™ = 0(i.e.)ag + ara + aza® + ... + apa™ = 0....... (1)

Let f(z) = ap + anx + e + ... + appz™ € Flx]. . By (1) a satisfies the
polynomials f(z) € F|x] of degree almost m. Since a is arbitrary in A, every
element in A satisfy the polynomial of degree at most m.

Theorem 4.53 IfV be an n dimensional vector space over a field F', given
any element T in A(V') there exists a non-trivial polynomial q(x) of degree
almost n? such that q(T) = 0.

Proof: GivenT € Hom(V,V) = A(V). But dim(A(V)) = dim(Hom(V,V))
dim(V) - dim(V) = n x n = n?. Since A(V) = Hom(V,V) is an algebra of
dimension n?, let T € A(V). By the above lemma, there exists a non-trivial
polynomial q(z) € F[z] of degree at most n?. Hence q(T) = 0.

Definition 4.54 A non trivial polynomial of lowest degree satisfied by T in
A(V) is called a minimal polynomial of T

Remark 4.55 If p(x) is a minimal polynomial of T and if T' satisfies h(x)
also then p(x)/h(x) (or) Show that the minimal polynomial of T € A(V)
divides all other polynomial satisfied by T'.

Proof: Let p(z) be the minimal polynomial for 7" then p(7") = 0 and p(x)
is of least degree. Given T also satisfies h(z), then A(T) = 0........ (1)

By applying division algorithm to p(x) and h(z), h(z) = p(z) - q(x) + r(z),
either r(z) = 0 or deg(r(x)) < deg(p(z))....... (2)

From (1), 0 = A(T) = p(T)q(T) +r(T) = 0= r(T) =0 p(T) = 0]. If
deg(r(x)) < deg(p(x)), we can come to a conclusion that r(z) satisfies T
whose degree is less than degree of p(z). .. r(x) = 0. From (2), h(z) =
p(x)q(z)(. r(x) = 0) = p(x)/h(x). Hence the remark.
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Definition 4.56 Let A, B be any algebra’s over F'. A map T : A — B is
called a homomorphism if,
1. (a1 + a2)T = aiT + aoT,
2. (a1a2)T = a1 TasT,
3. (aa1)T = a(aT).

If this T is 1 — 1, we say that T is an isomorphism.
Ker T ={a € AlaT =0, identity element in B}.

Definition 4.57 An element T' € A(V) is called a right invertible if there
exists an element S € A(V) such that TS=1. ( 1 is the unit element of
A(V))

Definition 4.58 An element T € A(V) is called a left invertible if there
exists an element S € A(V') such that ST = 1.

Definition 4.59 An element T € A(V) is said to be invertible (or) regular
if it is both right and left invertible (i.e.) there exists an element S € A(V)
such that TS = ST = 1. We write S as T~ ".

Remark 4.60 If T is both right and left invertible and if TS = UT = 1,
then S and U are unique.

Definition 4.61 An element T € A(V') which not regular is called singular.

Remark 4.62 It is quite possible that an element in A(V') is right invertible
but not invertible.

Example 4.63 Let F be the field of real numbers. Let V = F[z] be the set

of all polynomials in x. Define S € A(V) as q(z)T = “Lq(z). Let T € A(V)

as q(z)T = [ q(x)dz. Here TS =1 but ST # 1. Now,
q(x)TS = (q(x)T)S
= (/)
= ([ atwyan)
= (q(z)) -1

= q(x)
=T5=1

T is right invertible but not invertible.
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Remark 4.64 IfV is finite dimensional over F' then an element in A(V)
which is right invertible is invertible.

Theorem 4.65 IfV is finite dimensional over F', then T € A(V') is invert-
ible iff the constant terms of the minimal polynomial for T is not zero.
Proof: Let p(z) = ap 4+ ayz + o + ... + oz be the minimal polynomial
for T'. Assume that ag # 0 and p(T') = 0. To prove: T is invertible. Since
p(x) is a minimal polynomial for 7.

p(T)=0=ao+ T + ... + o T" =0........(1)
ag=—(aT+ ...+ Oéka)
= —(a1 + T + ...+ Oszk_l)T

ag = —(
o =T(—a; — T + ... — apTF )
1
=1= T(—(—al —Q9 — ... — Ckka_l))
Qg
1
1= T(——(al +as+ ...+ Ckka_l))

Qg

Let S = —aio(al + g+ ... + apTF1). Clearly, S # 0 and T'S = 1 similarly
ST = 1. Thus ST =TS = 1. T is invertible. Conversely, Suppose that T’
is invertible. To prove: ap # 0. Suppose not, a« = 0. From(1),

o T + OQT2 + ...+ aka =0
(1 + aT + ... + o, TFHT = 0.

Since T is invertible, 71 exist. Multiplying the above relation ¢,

= (T + aT?* + ... + ¢, THT)T L =0T 1 =0
=T+ aT? + ...+ T =0......... (2)

Let ¢(z) = aiz + ... + agz® 1. By(2), ¢(T) = 0. (i.e.) T satisfy the
polynomial ¢(z) of degree k — 1, which is a contradiction to the degree of
minimal polynomial for T', which is k =<« shows that agy # 0.

Corollary 4.66 If V is finite dimensional over F and if T € A(V) is in-
vertible then T~ is a polynomial expression in T over F.
Proof: Let p(z) = ag + a1z 4+ asx?® + ... + agx® with oy # 0 be the minimal
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polynomial of T

p(T) =0=ap+ 041T+042T2 + ...+ OZka =0
= qp = —(alT + a2T2 + ...+ aka)
g = (—Oél)T =+ (—Ozg)T2 + ...+ (—ak)Tk

1

- (_%)T+ (—%)W +..+ (—%)T’“
L= (=2 + ()T 4+ (T )T
(e7y) o @0
LT = (=) + (azfan)T 4t (< LT T T

T~ =81+ BT + ... + BpTF !

where 51 = (—3—(1)), vy B = (—g—’g) . T~ is a polynomial expression in T
over F.

Corollary 4.67 If V is a finite dimensional vector space over a field F
and if T € A(V) is singular then there exists S # 0 in A(V) such that
ST =TS =0.

Proof: Let p(z) = ag + 17 + azx? + ... + axz® be a minimal polynomial
of T over F. (i.e.) p(T) = 0= ag + a1z + az? + ... + axa® = 0. Since T
is singular (i.e.) T is non-invertible by Theorem ag=0. . auT +
wT?+ ..+ TF =0=" (a1 + T + ... + T HT = 0........ (1)

Let S = oy +aoT + ...+ ap T 1thenS #0 (.o + ooz +azx?+ ... +apzh!
is of lower degree than p(x)). From(1), ST = 0. Similarly 'S = 0. ... ST =
TS =0, where S # 0.

Corollary 4.68 IfV is a finite dimension over F and if T € A(V) is right
invertible then it is invertible.

Proof: Given T' € A(V) is right invertible. Then there exists U € A(V)
such that TU = 1........ (1)

To prove: T is invertible. Suppose T is not invertible. (i.e.) T is sin-
gular, then by Corollary there exists S # 0 in A(V) such that
ST =TS =0......... (2)

From (1), TU =0

= STU)=5-1
= (ST)U =S5
=0-U=5 by(2)
=95=0
=<=S5#0

This contradiction shows that T is invertible.
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Theorem 4.69 If V is finite dimensional over F', T' € A(V') is singular iff
v #£0in V such that vT = 0.

Proof: Assume that T is singular. By Corollary there exists S # 0 €
A(V') such that ST =TS =0....... (1)

Since S # 0 in A(V), there exists w € V such that wS # 0. Let v = wS
thenv # 0in V, vT = (wS)T = w(ST) = w0 = 0 by(1) = vT = 0,v # 0. .".
There exists v # 0 in V' such that vT" = 0. Conversely, suppose that there
exists v # 0 in V such that vT = 0. To prove: T is singular. Suppose not,
T is invertible. Then there exists U € A(V') such that UT = TU = 1. Now,
TU =1=v(TU) =v-1...... (2)

v(TU) = (vThYU=0-U=0— (3)

From (2) and (3), v =0=<«tov #0. .. T is singular.

Definition 4.70 Let T € A(V), then (range of the linear transformation
T) Range of T = {vT/v e V} =VT

Remark 4.71 (1) Range of T is a subspace of V

Proof: Let u,v € VT,a,8 € F. Now (au + Bv)T = (au)T + (Bv)T =
a(ul)+pB(wT) e VI = au+pv € VI. . VT isasubspace of V. . Range
of T is a subspace of V.

(2) If VI =V then T is onto.

Theorem 4.72 IfV is finite dimensional over F, then T' € A(V) is regular
iff T mapsV onto V.

Proof: Suppose T is regular. To prove: T is onto. Let v € V consider
Tt Now, (WT V)T = vt ' T)=v-1=v=v=>0T"HT,0e V. (ie)
every element v € V has pre-image v7~! under T in V. .. T is onto.
Conversely, suppose that T is onto. To prove: T is regular. Suppose not,
T is singular, we must show that 7' is not onto. Since T is singular, by
Theorem there exists v; # 0 in V such that v;7 =0 (0: V — V).
Suppose ajv; = 0 = a3 = 0 = wv;is linearly independent. Since {v;} is
linearly independent in the finite dimensional vector space. Since V is finite
dimensional, we can find vectors vy, vs,..., v, such that {vi,ve,vs,...,v,}
form a basis of V where dim(V') = n. ... VT is generated by wi = 01T, wy =
vy ..., wy, = v, T. Since wy = v1T = 0, VT is spanned by voT, vsT, ..., v,T.
(i.e.) VT is spanned by we,ws,...,w, .. dim(VT) < (n—1) < n =
dim(V) = dim(VT) < dim(V) = VT CV = VT #V = T is not onto.

Note 4.73 The above theorem can be replaced as T is reqular < dim(VT) =
dim(V) (i.e.) VI =V.

Remark 4.74 The above theorem suggest that we could use dim(VT) not
only as a test for reqularity but even as a measure of degree of singularity

for a given T € A(V).
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Definition 4.75 Rank of T': If V is finite dimensional over F'. The rank
of T is dimensional of VT'. The rank of T over F, it is denoted by r(T)
(i.e.) dim(VT)=Rank of T = r(T).

Remark 4.76 1. If r(T) = dimV. Then T is regular,

2. If r(T)=0. Then T = 0.
Proof: (1) Given r(T') = dim(V) = dim(VT) =dim(V) = VI =V =T
is onto = 7T is regular.
(2) Suppose r(T) =0 = dim(VT) =0 = VT = {0} = {vT|jv € V} =
(0} = (vT =0,Yv eV} =0=T =0.

Lemma 4.77 IfV is finite dimensional vector space over F'. Then S,T €
A(V)

r(ST)

IN

r(T)
r(TS) <r(T) and
r(ST)

r(TS) =r(T) for S regular in V.

Proof: ()VS C V = (VS)T ¢ (V)T = V(ST) C VTdim(V(ST)) <
dim(VT) = r(ST) <r(T).

(2)r(T) = m = dim(VT), where VT is a subspace of V. Let{wy, wa, ..., wn,}
be basis of VI' = dim(VT) = m. Now, w1S, w25, ..., w,,S generate (VT')S =
dim(V(TS)) < m = r(T). (ie) r(TS) < T(T). From (1) and (2),
r(ST) < r(T)andr(TS) < r(S) = r(ST) < min{r(T),r(S)}.

(3) Given S is regular

Sisonto =VS=V
(VSYr=vT
V(ST)=VT
= dim(V(ST)) = dimV'T
= r(ST)=r(T)........ (1)
Let r(T) = m, VT = m. Let {wi,ws,...,w,} be a basis of VI. Now,
{w1 S, waS, ..., wy, S} generate (VT')S = V(T'S). Claim: {w1S,waS, ..., w,S}
is linearly independent for if aq (w1.S) 4+ ag(w2S) + ... + m (w,, S) = 0 where
a; € F. Then,
arw1 S + aswsS + ... + apw, S =0
= (w1 + agws + ... + apwy,)S = 0.

Since S is regular, S~! exists. Now,

(w1 + agwy + ... + AW, )S - S1=0

aqwi + aswg + ... + apw, = 0.
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= a; =0V i [ {w,wy, ..., wy} are linearly independent]. Hence the claim.
(i.e.) {wlS,waS,...,w,S} is a basis of V(T'S) = dim(V(TS)) = m =
r(T) = r(TS)=r(T)....... (ii)

From (i) and (ii) (ST) = r(T'S) = r(T') for S regular in V.

Corollary 4.78 if T € A(V) and if S € A(V) is regular then r(T) =
r(STS™1).
Proof: r(STS™) = r((ST)(S7Y)) = r(S~1(ST)) = r((S1S)T) = r(T).

Remark 4.79 S,T € A(V) and if S is reqular then STS™' and T have
same minimal polynomial.

Characteristic roots:

Definition 4.80 If T' € A(V), then A € F is called characteristics roots
(or Eigen value of T') if X — T is singular.

Theorem 4.81 The element A € F is a characteristics roots of T € A(V)
iff for some v # 0 in V,oT = .

Proof: Suppose A is a characteristic root of T. Then A — T is singular.
By Theorem there exists a v # 0 in V such that v(A —T) = 0 =
Av—ovT =0 = v =0vT. Conversely, assume that there is a vector v # 0 in
V such that vT' = Av = Av —vT = 0 = v(A — T) = 0. By Theorem [4.69
A —T is singular. . A is the characteristic root of T'.

Lemma 4.82 If A\ € F is a characteristic root of T € A(V), then for any
polynomial q(x) € F[z], q(\) is a characteristic root of q(T).

Proof: Let ¢(z) = agz™ + a12™ ' + ... + a,,. Suppose A € F is a char-
acteristic root of T € A(V'). Then by Theorem there is a non-zero
vector v € V such that vT = v ........ (1)

To Prove: ¢(\) is characteristic root of ¢(r), it is enough to prove that
vq(T) = q(N\)v,v # 0 in V. Now vT? = (vT)T = (Av)T = A(vT) = A\(\v) =
A2v. Similarly, vT% = X3v. In general, vT* = A*v for all positive integer k.
Now,

v(g(T)) = v(apT™ + a1 T™ 4 ...+ am)
= v(agT™) +v(arT™ 1) + ...+ v(am)
= ag(vT™) + a1 (VT™ 1) + ...+ apv
= ag(A"™) + a1 (A" 1) + .+ ane
= (A" + A" )
= (g(V))v.

v(g(T)) = (¢g(A\))v Vv #01in V. . ¢(A) is a characteristic root of ¢(T).
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Theorem 4.83 If A € F is a characteristic root of T € A(V'), then X is a
root of minimal polynomial of T. In particular, T only has a finite number
of characteristic root in F.

Proof: Let p(z) = apz™ + a12™ ! + ... + ay, be the minimal polynomial
of T over F. Then p(T) =0 (i.e.) agT™ + oy T™ 1 + ... + . (¥)

Since A is a characteristic root of 7. Then by Theorem [£.81] there is v # 0
in V such that vT" = Av......... (1)

We have to show that p(A\)v = vp(T). Now, vT? = (vVI)T = (\v)
AwT) = AM(Mv) = Mv. Similarly v7° = A3v. In general vT% = My (2
all positive integer k........ (2)

T —
) for
v(p(T)) = v(apT™ + a T™ ' + ...+ o)

= v(agT™) + (a1 T™ ) + ..+ v(am)

= ap(vT™) + a1 (vVT™ ) + ...+ o

= ag(\™) + a1 (N 1) + .+ amu

= (ap\™ + a N QU )V

= (p(\))veeeene. (3)
p(A)is a characteristic root of p(T"). (3) = v-0=p(A)v (by *) = p(A) =0.
*. A is the root of the minimal polynomial of T" and degree of p(z) < n?

(by Theorem [4.53) where n = dimp(V). .. T has only a finite number of
characteristic root in F'

Lemma 4.84 IfT,S € A(V) and if S is regular, then T and STS~! has

the same minimal polynomial.

Proof: First we shall show that for any polynomial q(x) € F[z], ¢(STS™1) =
S(q(T)S~ 1 ... (1)

Forlet q(x) = ap+aix'+asz?+...4a,x™. Now, (STS™ )2 = (STS 1) (STS™1) =
(ST)(S™ISNTS™Y) = (ST)(1)(TS™Y) = STTS™ = ST?S~!. Similarly we

get (STS™ 1)k = STkS—!, for every k=1,2,3..... ...... (2)

q(STS™) = ag + a1 (STS™) 4+ aa(STS™1)? 4 ... + a,,, (STS™H™
=ag+a1(STS™) + a(ST?S™) + ... + @ (ST™S™1)
=S(ag+ T+ asT? + ... + ozme)S_1

q(STS™) = Sq(T)S™1........ (3)

Let p(z) be the minimal polynomial of T" over F. Then p(T') = 0........ (4)

Now by equation (3), p(STS™!) = Sp(T)S™! = S(0)S™! =0 = STS!
satisfies the minimal polynomial p(x) of T. Suppose Let f(z)be the poly-
nomial of T such that deg(f(z)) < deg(p(z)) and f(STS~!) = 0. Again by
eqn (3), SF(T)S™t = f(STS™) = f(0)=0= Sf(T)St=0= f(T)=0
[pre and post multiply by S and S~!]. T satisfy the polynomial f(z) and
deg(f(z)) < deg(p(z)), which is contradiction to the minimality of p(z).
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Consequently, p(x) is the minimal polynomial of STS™! also let g(x) be
the minimal polynomial of STS™! (i.e.)Sg(T)S~! = 0 = Sg(T)S~! =
0 = ¢g(T) = 0. (i.e) T satisfies the polynomial of g(x). Let h(z) be the
polynomial of degree less than the degree of g(z) and h(x) = 0. Again
h(STS™1) = Sh(T)S™! = 0. (i.e.) STS~! satisfies the polynomial h(x)
and deg(h(z)) < deg(g(z)), which is contradiction. Consequently, g(z) is a
minimal polynomial of T" also. Hence the theorem.

Definition 4.85 Let A be a characteristic root of T € A(V) the element
v #0in V is called characteristic vector of T belonging to A if vT = \v.
(Theorem guarantees the existence of such a characteristic vectors in
V' corresponding to A

Theorem 4.86 If \1, \a, ..., A\, are distinct characteristic roots of T € A(V)
and v1,ve, ...,V are characteristics vectors of T belonging A1, A2, ..., \p Te-
spectively then vi,va, ..., v are linearly independent over F'.
Proof: Case(i): If k = 1 then there is only one characteristic vector v; # 0
in V' which is linearly independent.
Case(ii): If £ > 1, To prove: v, va, ..., vg are linearly independent. Suppose
the characteristic vector vi,vo, ..., v are linearly dependent over F. Then
there exists scalars aq, as, ..., ay not all zero in F' such that ajv; + asvy +
... + apvr = 0. Without loss of generality, let us assume that the shortest
relation with non-zero coefficients (by suitably renumbering)
Brv1 + Pavg + ... + Bjv; =0
where ﬂl = ﬂg = ... :,Bj 75 0
Since \;’s are characteristic roots we have
’UZ‘T = )\ivi, W)
By equation(1),
(51’1)1 + Bovo + ... + ﬂjUj)T =0-T
11T + BoveT + ... + ,Bj’l)jT =0
B1(nT) + Ba(v2T) + ... + Bj(v;T) =0
BrA1vr + Bodgva + ... + BiAv; =0
(61)\1)111 + (52)\2)’02 + ...+ (ﬁj)\j)vj =0....... (2)
)\1 X (1) = )\151’01 =+ )\25202 + ...+ )\1,83‘1)]' =0
(2) — (3) = ()\2 — )\1)52’[)2 + ()\3 — )\1),831}3 + ...+ ()\] — Al),ﬁjfl}j =0......... (4)

Now, (/\j — Al)ﬁj 7é 0,2=2,3,....9 ( /\j -\ 7é 0,2 >1 and ,Bj 7& 0). (i.e.)
Yov2 + Y3U3 + ... + YV = 0....... (5)

where Yo = Ao — A1 7& 0,v3 = A3 — A1 7& 0,...,”yj = ()\j — )\1) 7é 0 =
U2, V3, ...,v; are linearly dependent. By relation (5) we have produced a
shorter relation than that of equation (1) between vy, vs, ..., v =<. This
contradiction proves that vi, ve, ..., v; are linearly independent. For example,
t € V3(F) number of characteristics root of T' < 3.
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Corollary 4.87 IfT € A(V) and if dim(V) = n then T can have at most
n distinct characteristic root in F.

Proof: LetAi, Ao, ..., Ay, be the distinct characteristic root of 7. To prove:
m < n. Let vy,vo,...,v, be the characteristic vector T belonging to the
characteristic roots A1, A2, ..., A\y,. By Theorem [4.86| vi,v9, ..., v, are lin-
early independent. Since the dim (V') = n, the number of elements in any
linearly independent set in it will be less than or equal to n, m < n.

Corollary 4.88 If T € A(V) and if dimp(V) = n and if T has n distinct
characteristic root in F', then there is a basis of V over F' which consist of
characteristic vector of T'.

Proof: Let A1, Ao, ..., A\, be distinct characteristic roots of T'. Let vy, vo, ..., vp
be the characteristics roots A1, Ao, ..., A,. We first claim that vy, vs, ..., v, are
distinct for 1 < 4,5 < n. Suppose v; = v; = ;T = v;T = \v; = \jv; =
(>\z — )\j)vi =0= )\ - )\j = 0( (Y 75 0) =\ = )\j =< (Since )\1,)\2, ey An
distinct characteristic root). Hence vy, v, ..., v, are distinct. By Theorem
4.86} v1,v3, ..., v, are linearly independent. Let v € V| since dimp(V) =n
any subset of n + 1 vectors are linearly dependent. (i.e.) vy, va,...,v,, v are
linearly dependent. .". there exists scalars aq, as, ..., a,, @ not all zero such
that a1v1 + asvs + ... + apvy + av = 0. In particular a # 0,

av = —(av1 + agve + ... + apvy)

1
v = —a(alvl + agvg + ... + apUy)

= v =(—(atag)vy + (—araz)ve + ... + (—a " an)v,)

= v = B1v1 + Bovy + ... + Bnvy, where f; = —a oy, i =1,2,...,n.
= v € L(S) = {v1,va,...,u,} spans V. . {v1,v,...,v,} is a basis of V.

Canonical forms:

Triangular forms: Since the basis used at any time is completely at our
choice for a given linear transformation 7'. It is natural for as to seek a basis
in which the matrix of D will be a particular nice forms. Such nice forms
of matrices as canonical forms. In this section we are going to see one such
nice form called triangular form.

Definition 4.89 The linear transformations S, T € A(V') are said to be
similar if there exists an invertible element C € A(V) such that T = CSC~1.
The definition already defined interms of matrices as mo(T) = Cm1C~! =
A =CBC™'. Two matrices A, B € F,, are similar if there exist an invertible

element C € F,, such that B = CAC!.

Remark 4.90 (1) The relation of A(V') defined by similarity is an equiv-
alence relation. (i.e.) S ~ T = S is similar to T = T = CSC™'. ~
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is reflexive, symmetric and transitive. .. ~ is an equivalence relation. The
equivalence class of an element in A(V') under the relation similarity is called
the similarity class and is denoted by [S].

(2) For any two given linear transformations to determines whether on not
similar is not an easy one. Instead, we try to establish some kind of land-
mark in each similarity classes of one of these to set if the other is in it,
but this procedure is not feasible. To determine if two linear transformation
are similar, we need but compute a particular canonical form for each and
check if these are the same.

Definition 4.91 Let W be a subspace of a vector space V.. W is said to be
invariant under T € A(V) if WT C W.

Lemma 4.92 If W C V is a invariant under T then T induces a linear

transformation T on V/W defined by (v +w)T = v+ W. If T satisfied the
polynomial q(x) € Flz] then so does T. If p1(z) is a minimal polynomial of
T over F and if p(x) is that for T then p1(z)/p(z).

Proof: Part I: Given T' € A(V) = Hom(V,V). (ie.) T:V = Visa
homomorphism. Let V = V/W = {v+W|v € V}. Define vT = (v+W)T =
vT + W. Suppose 1 = v9,v1,02 € V/W

sn+W=v+W
=v=neW[lra+H=b+H=a—-bec H]
= (v —v)T e WT
=T —wvT eWT
ST +W=vT+W
= (v1 + W)T = (vg + W)T
= 0T = 6T

-, T is well defined.
Now,

(01 4+ 92)T = ((v1 + W) + (vg + W)T
= (v +v)T+ W
=T +vT+W
=T+ W)+ (v,T + W)
= (v1 + W)T + (vg + W)T
=0T + 0T
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*. T defines linear transformation on V.

Part II: Suppose that T satisfies q(x) = ag+a1x+ a2’ 4 ...+ aga® € Flz].
Then ¢(T) = 0. (ie.) ag+anT 4+ aT? + ...... + o TF =0...... (1)

Claim: ¢(T) = ¢(T) we prove that ¢(T) =0. Let v =v + W € V/W =V

similarly TF = T%........... (2), for any k>0 -
Consequently for any polynomial ¢(x) € Flz],q(T) = q(T), for

q(T) = ap + arT + agT? + ... + ap(T")
=ag+ 1T+ asT? + ...+ ozk(fk)

for any ¢(z) € F[z] with ¢(T) = 0 = ¢(T) = ¢(T) = 0. .. T satisfies

q(z) € Flz]. )

Part III: Suppose pi(x) is minimal polynomial for 7" (i.e.) pi(x) = 0. Also

given that p(z) is minimal polynomial for 7. (i.e.) p(T) = 0. We have to

show that py(x)/p(x). Now p(T) = p(T) =0 = p(T) = 0 = 0. p(z) satisfies
(

T. By Remark p1/p(x) (here p(x) and h(z) = _(x) pi(x)).

Definition 4.93 Triangular matriz A matriz M is called triangular if
the entries above the main diagonal are zero (or) equivalently T is a lin-
ear transformation on V over F matrix of T in the basis v1,vo,...,v, are
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triangular if

’U1T = (X111
UQT = (9101 + a22U9

UgT = (3101 + Q39V9 + a33V3

vl = ajnvy + aiovy + uiv;

v = 11 + a2V + QppUn.

(i.e.) if v;T is a linear combination only if v; and its predecessor in the
basis.

Theorem 4.94 IfT € A(V) has all its characteristic root in F', Then there
is a basis of V' in which the matriz of T is triangular.

Proof: We prove this theorem by induction on the dimension of V over F.
If dimp(V) = 1. Then every matrix representation of T' € A(V) is a scalar.
(i.e.) A matrix of order 1 x 1 which is trivially a triangular matrix. Suppose
the theorem is true for all vector spaces over F' of dimension (n —1). Let V'
be a vector spaces of dimension n over F'. Since the Linear Transformation
T on V has all its characteristic root in F. Let A\; € F be a characteristic
root of T'. Then there exists a non-zero vector v; € V such that v1T = A\jvy.
Let W = {avi|a € F'} then W is a subspace of V' of dimension 1. Then,

WT = {(av)T|a € F,v, € V'}
={a(nT)|a € Fvy € V}
= {owi|w; € V,a € F}

= WT C W. .. W is a subspace of V of dimension 1 and invariant under 7'.
Let V = V/W then dim(V) = dim(V/W) = dim(V) — dim(W) = (n — 1).
By Lemma m T induces the linear transformation 7" on V. Also minimal
polynomial of T over F divides minimal polynomial of T over F. . All the
roots of minimal polynomial of T being the roots of minimal polynomial of
T must be in F. Thus V and T satisfies the hypotheses of the theorem.

Since dim (V') = n—1, then by induction hypotheses there is a basis consists
of the vector vo, Us, ..., U, over V over F'in which the matrix of T' is triangular
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@QT = 0522’1_)2
’UgT = 0432@2 + 0433173

1_)4T = Oé42172 + 01431_13 + Ot441_)4

Und = Qpoto + ap3¥3 + ... + Qpunn

Let v, v3, ..., vp, be the elements of V mapping into Oy, U3, ..., U, of V respec-
tively. (i.e.) vo = vo+ W; v3 =v3+W; ...; Uy = vy +W. Then vy, vy, ..., vp
form a basis of V. Since voT = aga(vy + W) = ciggvg + W

(va+ W)+ T = agnue + W
VT + W = agus + W
= T — agovg € W
= T — agov9 is a multiples of v1, say ag1v1
= 0T — (V2 = (11
voT" = a1 + Q2202

Similarly vsT = asivy + azov2 + as3vs

;T = aipvr + aiova + ayivs (1 =1,2,...,n)

(i.e.) the basis v1, v, ..., v, of V over F provides us with a basis where every
v;T is a linear combination of v; and its predecessors hence the matrix of T
in the basis {v1,ve, ..., v, } is triangular.

Theorem 4.95 If V is a dimensional over F' and T € A(V) has matriz
m(T) in the basis vi,ve,...,vn and ma(T) = Cm1(T)C~L. In fact if S is
the linear transformation of V' defined by v;S = w; fori=1,2,....,n then C
can be chosen to be mq(S).

Remark 4.96 The above theorem can be restated as if there is a matric
A € F,, has all its characters root in F then there is matriz C € F,, such
that CAC" is a triangular matriz.

Proof: Let A € F,, has all its characteristic roots in F. A defines a linear
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transformation 1" on F™ whose matrix in the basis is precisely A.

v1 = (1,0, ....0)
Vo = (O, 1, 0)
v, = (0,0, ....1)

The characteristic root of T', being those of A are all in F'. Hence by Theorem
[4:94] there is a basis of F™ in which the matrix of T is triangular. However
by Theorem This changes of basis merely changes the matrix basis into
CAC™! for a suitable C € F,

Remark 4.97 characteristic root of triangular matriz is diagonal matriz.

Theorem 4.98 If V is n dimensional over F and if T € A(V) has all its
characteristic roots in F', then T satisfies a polynomial of degree n over F.
Proof: Since V' is n-dimensional over /' and 7' € A(V') has all its root in F.
.. By Theorem [4.94] we can find a basis vy, vs, ..., v, such that

’U1T = /\1111
T = 2101 + Aovg

’U3T = a31v1 + Q32v2 + )\3’03

v T = ;101 + ayovg + .o + Nji—1vi—1 + A for i =1,2,3,...,n.
Equivalently,

T —A\vy =0

(i.e.) vi(T— A1) =0

v — a1 + Aoz =0
(i.e.) va(T — A2) = a1

v3(T — A3) = 3101 + Q3202

Ui(T — )\@) = ;1V1 + Qo2 + ...... 4+ ay1v;-1 fori=1,2,...,n--- (1)
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NOW, UQ(T—/\Q)(T—/\l) = (UQ(T—/\Q))(T—)\l) = aglvl(T—)\l) = 0521(1)1 (T—

)\1)) = (21 (0) =0........ (2)
But (T'—= X)(T = A1) = (T = M)(T = A2)
v1(T = X)(T = M) = v1((T = M)(T = A2)) = 0 (by (1))

Similarly vi((T — X3)(T — X2)(T'— A1) =0
Continuing this type of computation fields,

i((T = X)(T = Aie1) -+ (T = )T = A1) =0
V(T = N)(T' = Aie1) -+ (T = XA)(T' = A1) =0

V(T = N)(T = Aie1) -+ (T = X)(T' — )\1))
fori=mn, let S= (T —X)(T —Ap—1) -+ - (T = X)) (T — \1)
( )
( )

S =v1((T = )T = A1) - (T = X)) (T — 1)) =0
V23S = (T — M) (T — A1) - (T = X)) (T — A1) =0
Similarly v385 =0,...,v,5 =0
veS=v3S5=..=0v,5=0

The matrix S satisfies v1S = 0,v95 = 0,...,v,S = 0. Since S anihilates a

basis of V', S must anihilates all of V. -, S = 0.

(T = M) (T = A1) -+ (T = A)(T — A1) = 0.

Let p(z) = (z = An)( = An1) -+ (¢ = A) (2 — )
p(T) = (T =2 )(T = Ap1) - -+ (T = A)(T = M) = 0 by

Hence T satisfies the polynomial of degree n over F.

Canonical Form:

The relation on A(V') defined by similarly is an equivalence relation. The
equivalence class of the element of A(V') will be called its similarity class.
Given two linear transformation, by scanning the similarity class of one we
could determine whether or not they are similar. But this procedure is not
feasible one. Instead we try to establish some kind of land mark in each
similarity class, and the way of going from any element in the class to this
landmark. We shall prove the existence of linear transformation in each
similarity class whose matrix in some basis of a particular nice form. These
matrices will be called canonical forms. For example, triangular form is a

canonical form.
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Trace and Transpose

Definition 4.99 The trace of a matriz A is the sum of the elements on the
main diagonal of A we shall write trace of A astrA (i.e.) if A= (aj) i,j =
1,2,...,n. Then

n
trA = Z (077)
=1

Lemma 4.100 For A/ B€ F,, and A€ F,
1. Trace of NA = A(trA).
2. tr(A+ B) =trA+trB.
3. tr(AB) = tr(BA).

Proof: (1) Let

A= (Oéij) i,j = 1,2, ...n
A = ()\Oéij) i,j = 1,2, ...n

trAA = Z )\Oéij
i=1

(2) Let (Ozij) eF, B= (ﬂ”) e F,
Then A + B = (ou;) + (Bij) = (Vi5), 4,7 = 1,2,...,n where (v;;) = ayj +
Bijs 1,J =1,2,...,n.

tr(A+ B) = tr(vij)

n
= Z Yii
i=1
n
= Z(aij + Bii)
ZTll .
= Z Qi + Z Bii
i=1 i=1

={rA+trB



73

(3) Let A = (aij) € Fn, B = (8ij) € Fy. Then, AB = (;5), where

Vij = Y ik
i=1
tr(AB) = tr(vi)

n
= Z Vii
1=

Let BA = (\ij), where \;j = Z ik Brj
k=1
tT(BA) = t?"()\ij)

- Z)\Z’L

ﬂlkakl

303
Z ik Bki)
Z

from (i) tr(AB) =

5]%051]6

(Akk)

1
= tr(BA)

Definition 4.101 Let T € A(V) then the trace of T is the trace of the
matriz My (T) where My (T) is the matriz of T in some basis of V

Remark 4.102 The above definition is meaningful and depends only on T
and not on any particular basis of V.

Corollary 4.103 If A is invertible then tr(AC’A H=trcC.
Proof: Let B = CA~!. Then, tr(A(CA™Y)) = tr(A(B)) = tr(BA) =
tr(CA™TA) = tr(C(AA™Y)) = tr(C).

Lemma 4.104 IfT € A(V) then tr(T) is the sum of the characteristic root
of T.
Proof: Let p(x) be the minimal polynomial and K be the splitting field
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of p(x). In K,, T can be brought to Jordon from say J, where J =
ATA™Y, trd = tr(ATA™Y) = tr(AT)A™! = trA=Y(AT) = trA=1AT =
trl...... (1)

Since all the characteristic roots of T" appears on the main diagonal of J
(Jacobian). trJ=Sum of the characteristic root of T. ¢r(T)=Sum of the
characteristic root of T'. (by (1))

Corollary 4.105 tr(BAB™!) =trA.

Remark 4.106 If T is nilpotent trT" = 0 Vi > 1.

Proof: Given T is nilpotent = there exist k& > 0 such that t* = 0. Let X be
the characteristic root of T then there exist v # 0 in V such that vT = Av.
Now, vT? = (vI)T = (M\)T = A(VT) = A(\v) = A\2v. Similarly vT* = A\
=0=XNov (.TF =0)= M =0= X=0 (multiply by A\'*). Hence all
the characteristic roots of 7" are 0 (since A is only characteristic root). But
trT = Sum of the characteristic root of T = 0. Since T is nilpotent, 1%, for
i > 1 is nilpotent = trT% =0 Vi > 1.

Remark 4.107 Converse of trT® = 0,Vi > 1 then T is nilpotent. The
converse need not be true. In general T need not be nilpotent.

()

be a matriz over the field F' of characteristic 2 = 2a =0Va € F'...... (1)
trT= Sum of diagonal element= 1+1=2(1)=0}." char F=2]. T =T Vi >
1; trTP =trT =0 Vi > 1. But T is not nilpotent, since T* =T # 0 Vi.

Example 4.108 Let

Lemma 4.109 If F is a field of characteristic O and if T € A(V') is there
exist trT" = 0 Vi > 1, then T is nilpotent.

Proof: Let p(z) = 2™ + a12™ ! + ... + ay,—1 T be the minimal polynomial
of T. Then,

p(T) =0
ST+ T+ T + . 4 T =0
= tr(T" + onT™ " + aoT™ % + .. + e TY) = tr(0)
= tr(amI) =0 [for i >1,T = 0]
= oy (trl) =0
= noyy, =0 (where n = dim(V') and trl = n)
=, = 0(. F is char 0)

(i.e.) Independent term of minimal polynomial p(z) is zero. ... T is singu-
lar,by Theorem m Then there exists v # 0 in V' such that v = 0 (by
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Theorem [£.65)= vT = 0-v. (i.e.) 0is a characteristic root of 7. Let K
be an extension of F' which contains all the characteristic root of T'. Now in
K,, T can be brought to the triangular form (since 0 is the characteristic
root if T"). We have,

0O 0 --- 0
By ay -+ 0
. 0 O
Bn - - ap
where
a9 0 0
* Qs 0
T2 = isn—1xn—1matrix

0 0
TQK: (* T2k>

=0=trTF = trTgk = trTQk =0 Vk > 1. By using induction on dimension
(or repeating the argument on Th. We see that all the characteristic roots
are zero)

Qg = Q3 = ...... = «a,, = 0 = T is brought to the triangular form and all its
diagonal elements are zero.

..T" = 0. Hence T is nilpotent.

Lemma 4.110 If F' is of characteristic 0 and if S, T € A(V') are such that
ST — TS commutes with S then ST — TS is nilpotent.
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Proof: Given F' is of characteristic 0 Let k£ > 1 then,

(ST —TS)* = (ST — TS)* (ST — TS)

= (ST — TS)F=Y(ST) — (ST — TS)*~1(TS)
= S((ST —TS)*1T) — (ST — TS)*'T)S
= SB — BS where B = (ST —TS)*'T

= tr((ST — TS)*) = tr(SB — BS)
=tr(SB) — tr(BS)
— tr(BS — BS)
=0

S tr((ST —TS)¥) =0k >0. . By Lemma [4.109 ST — T'S is nilpotent.

Definition 4.111 Transpose: If A = (cy;) € F,, then the transpose of A,
written as A’, is the matriz A" = (v;;) where v;; = oj; Vi and j.

Lemma 4.112 For all A, B € F,,
1. (AY=A
2. (A+B)Y =A"+PB
3. (AB) = B'A

Proof: (1) Let A = (a;j) € F,,. Then A" = (5;;) where f;; = aj;
(A/)I = (’Yz'j) where Yij = sz’ = (A/)/ = (631) = = A.
(2) Let A = (Oéij) e l,; B= (ﬂ”) e I,

(A+ B) = (aij + Biz) = (i)
(A + B), = (523) where (Sij = 'in
=i = (i + Bji)
— A/ + B/
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(3) Let A= (aij) € F, and B = (51]) e F,

AI = (’}’ij) where Yij = Oy
B/ = (5U) where (5,']‘ = ﬁji

AB = (X\ij) where \ijj = Z ik Br;
(AB)" = (nij) where pij = Ajq

B'A" = (&) where &5 = Sinyj
1

n
i = Y Bricji
k=1

= kS
k—1
&ij = Nji
B'A' = (ABY

Definition 4.113 (i) A is said to be symmetric matriz if A’ = A
For example,
d

0
g

o 3 O

g
e
t
(ii) A said to be skew symmetric matriz if A’ = —A

For example,
0 1
-1 0

Definition 4.114 Adjoint Operator: Let F be a field of complex number.
Let A = (o) € Fy,. Then A* = (v;; where v;; = @j; the complex conjugate
of aij; so here * is usually called the hermitian adjoint on F,, denoted by
A* defined as A* = (vi;) where v;j = a5;. Let A = (o) € F the hermitian
adjoint of A on F, is defined as A* = ~;; where v;; = ;.

Remark 4.115 Any matriz can be uniquely written as the sum of the sym-
metric an skew symmetric matrices for A = (A + A') + (A — A).

Definition 4.116 Adjoint mapping: A mapping * from F, into F, is
called an adjoint if

1 (A =4
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2. (A+ B)* = A* + B*

3. (AB)* = B*A* for all A,B € F,

Definition 4.117 Suppose F be a field of complex numbers and that adjoint
x on F, is the hermitian adjoint. The matriz A is called hermitian if A* =

A.
Definition 4.118 A is called skew hermitian if A* = —A

Remark 4.119 .

1. Any square matriz A can be uniquely written as a sum of a hermitian
and a skew hermitian matrices

A=L1(A+A")+1(A-A").
2. If A#£0 € F, then trace of AA* > 0.

3. If Ay, As, ..., A, € F, and if /11141< + A2A§ + ...+ Ak;Az = 0 then
A= Ay — .. = Ay

4. If X is a scalar matriz then \* = .

Example 4.120

3 0\ .. (-3 0\
A_(o 3J’A“<o —&)’

Result 4.121 The characteristics roots of a hermitian matriz are all real
(i.e.) if a complex number X is a characteristic roots of a hermitian matriz
then A must be real.

Proof: Let A be a hermitian matrix then A = A* (ie.) A’ = A and A
be a characteristic root of T € A(V). Let X be a characteristics vector

>
Il
/N
o &
3
! o
w
~.
N——
>
*
|
>
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corresponding to A then,

AX = )\X
= X'(AX) = X'(AX)

= X'AX = \X
= X'AX=)XX
= X'AX = AX'X [- A’ = A* = A since hermitian]
= X'AX =\X'X
= (AX'X) = AMX X)
= \X'X)
= A=N(X'X)=0

_ n
But X'X = @121 + @222 + o + Tnty = Y |2 #0
i=1

= A=AN)=0=X=X\ .. \isreal

Result 4.122 If A € F, then all the characteristic roots of AA* are non-
negative
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5. UNIT V

Extension Fields

Definition 5.1 Let F be a field; a field K is said to be an extension of F
if K O F. Equivalently, K is an extension of F if F is a subfield of K.

Remark 5.2 Throughout this chapter I will denote a given field and K an
extension of F.

Example 5.3 .
1. R is an extension of Q.
2. C is an extension of R.

3. Any field is an extension of itself.

Remark 5.4 .

1. Extension field K can be regarded as a vector space over F. But a
vector space over F' cannot be considered as an extension.

2. If K is an extension of F', then under the ordinary field operation in
K, K is a vector space over F. As a vector space we may talk about
linear independence, dependence, dimensions, basis etc. in K relative
to F.

Definition 5.5 Let F' be a given field and K be an extension of F. The
degree of K over F is the dimension of K as a vector space over F. (i.e.)
degree of K over F=dimension of K over F = dimp(K).

Note 5.6 [K : F] will denote the degree of K over F.

Definition 5.7 When K is finite dimensional as a vector space over F' we
say that [K : F] is finite and we call K is finite extension of F.

Example 5.8 .

1. If F is an arbitrary field then clearly, F' is a subfield of F'. Fvery field
F' can be regarded as an extension of itself moreover, F' can be regarded
as a vector space over F'. Here the set S = {1} consisting of only the
unity of F. S is linearly independent and L(S) = F. . S forms a
basis of F' over F. Then dimp(F)=1 (i.e.) [F : F|=1. Here F is finite
extension of F.



81

2. Since the field of complex numbers C contains the field of real num-
bers R, C is an extension of R. consider the set S = 1,1 of complex
numbers. Claim: S is a bases of C over R. Let a,b € R
Now,

a+ib=a-14+bi=0=0+410
=a-14+b-i=0-140-1¢
=a=0,b=0
= S is Linearly independent........ (1)

Let a+1ib be an arbitrary element in C. Now a+1ib=a-1+bi. (i.e.)
Any element in C can be uniquely written as a linear combination of
landi= L(S)=C........ (2)

From (1) and (2), S forms a basis of C over R

= dimprC =2 = [C:R] =2. . C is an finite extension of R.

3. Q(v2) = {a+bv2|a,b € Q} is a field with respect to addition and
multiplication. Also Q set of all rational numbers is a field with re-
spect to addition and multiplication. Clearly Q is a subfield of Qv/2.
(i.e.) Q(\/2) is an extension of Q. Consider the set S = {1,1/2}.
Claim: S is Linearly Independent

a+bv/2=0

=a+bvV/2=0+0V2
=a=0,b=0= S is Linearly Independent....... (1)

Claim: S spans Q(v/2). Let a + byv/2 be any element in Q(v/2) and
a+bvV2=a-1+b-v2. -.L(S) =Q(2)........ (2)

From (1) and (2), S forms a basis of Q(v/2) over Q. [Q(v/2) : Q] = 2
(i.e.) dimgQ(v/2) = 2. . Q(\/2) is a finite extension of Q.

4. Consider an indeterminate x over a field F'. Let K be the field of Quo-
tients of F[x]. Then K is an extension of F. For any ag, a1......a0p, € F
ag-14ai-z+...4az"+..=0=04+0-2+0-22+... = o; = 0 Vi.
The set S = {1,z,22%,...,2" 2" Y .}, It is an infinite subset of K
which forms a basis of K over F. Consequently, [K : F] is infinite.

Theorem 5.9 If L is a finite extension of K and K is a finite extension of
F then L is a finite extension of F'.

Proof: Let [L: K] =mand let [K : F] =n. Since [L : K] = m,dimg (L) =
m

Let {v1,v2,...,v,} be a basis of L over K. Similarly, let {w;, ws....w,} be a
basis of K over F. Let S = {vw;|i =1,2,...,m,j = 1,2,...,n}. To Prove:
S forms a basis of L over F. First we must show that S generates L (i.e.)
To Prove: L(S) = L. (i.e.) to show that every element in L can be written
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as the linear combination of elements of S with the coefficients in F. Let
t € L be any element. Since every element in L is a linear combination of
{v1,v2, ..., v} with coefficient in K, in particular ¢t = kyv1, kova, ..., kpmom,
where k; € K...... (1)

Since [K : F] = n and {wi,ws,...,w,} forms a basis of K over F, any
element of K can be written as the linear combination of {wy,ws, ..., w,}
with the coefficients in F’

k1 = fuiwr + frawe + ... + fiawy,
ko = forwy + foowa + ... + fopwy

ky, = fm1w1 =+ meWQ 4+ ...+ fmnwn, fij cF.... (*)

Substitute these values of ki, ks, ..., ky in (1)

t = (fuwr + fiawz + ... + finwn)vr + (farwr + faowz + ... + fanwy)vz + ...
+ (fmiwi + fmowa + ... + franWn)Vm, where fij; € Fii=1,2,...,m;
7=12...,n

t = friwivr + frowevr + ... + frpwnvr + farwive + foawave + ...+ fopwnva
+ oo + fr1w1Vm + frowom + .. + frnWnUm

t = fi1(wivr) + fra(wavy) + ... + fin(wnpv1) + fo1(wiv2) + foo(wova) + ...
+ fon(wnpva) + oo + frn1(W1vm) + fin2(Wavm) + oo + fon (Wpvm ). ... (A)

(i.e.) tis a linear combination of {vjw;li =1,2,...m,j =1,2,...n} over F'
L(S)=1L....(2)

Next we have to show that the elements of the set

S ={vjw;/i=1,2,...,m,j =1,2,...,n} are linearly independent over F.
Suppose, fi1(wivi) + fia(wav1) + ... fin(wnvr) + for(wive) + fa2(wovz) +
--~f2n(wnv2) +.t fml(wlvm) + fm2<w2vm) +ot fmn(wnvm> =0..... (3)
Claim that f;; = 0Vi=1,2,...m,j = 1,2, ...n. Regrouping the (3) we get,
(fuiwt + fiowa + ... + finwp)vi + (forwr + foowa + ... + fopwp)va + ... +
(fmlwl + frowz + ... + fmnwn)vm =0...... (4)

(i.e.) kivy + kovy + ... + kv, = 0,k; € K. But, by our assumption
{v1, v2, ..., vy Horm the basis of L over K so vy, vs, ..., v, are linearly inde-
pendent over K
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.',]ﬁ:k‘Q:...:]{m:O
k1 = 0= fiiwr + fiowz + ... + frpw, =0
ky = 0= farwy + foowz + ... + fop,w, =0

km =0 = fiwi + fmows + ... + franwn = 0...... (5)

Since {w1,wy, ..., wy,} forms the basis of K over F' they are linearly indepen-
dent over F'.
from (5) we have,

fu=fiz=...=fin=0
fo1=foo=..=for, =0

fmlzfm2:~-:fmn:0

(ie) fi;Vi=1,2,..,m,j =1,2,..,n. . S ={vw;li = 1,2,...,m,j =
1,2,...,n} is linearly independent...... (6)

From (2) and (3), the set S which contains mn elements forms the basis of
Lover F. ' [L:F]l=dimp(L)=mn=[L: K|[K : F].... (7)

Since [L : K] and [K : F| are finite = [L : F] is finite by (7). .. L is a finite
extension of F'.

Corollary 5.10 If L is a finite extension of F and K is a subfield of L
which contains F, then [K : F|/[L : F).

Proof: Given L, K, F' are fields, such that L D K D F and [L : F] is finite.
Clearly any element in L, linearly independent over K, linearly independent
over F. From the assumption [L : F] is finite we come to conclusion that
[K : F] is finite. By previous theorem, [L : F| = [L : K|[K : F]. Hence
[K : F|/[L: F].

Definition 5.11 An element a € K is said to be algebraic over F' if there
exists elements ag, a1, g, ..., oy € F, not all zero such that aga™+oa™ ' +
.+, = 0.

Remark 5.12 if p(z) = agz"™ + a1z ' + ... + an,a; € F. . aga™ +
a4+ ..+ a, =0= p(a) =0. (i.e.) a € K is algebraic over F if there
is a non-zero polynomial p(x) € F|x] which satisfies a. (i.e.) p(a)=0.

For example, p(z) = 23+ 322 + 3z + 1 = p(—1) = 0 = —1 is algebraic over
Q and 1 is not algebraic over Q.
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Adjunctions to a in F'is F(a)

The field obtained by adjointing a to F. Let K be an extension of F' and
a € K. Let M be the collection of all subfields of K which contains both F
and a, M is not empty because K is a subfield of K and K contains both
F and a.

The intersection of all subfields of K which are members of M is also a
subfield of K. Let F'(a) denote the intersection of those subfields of K which
are members of M then F(a) is a subfield of K. Obviously F'(a) contains
both F' and a because each members of M contains both F' and a.

Thus F'(a) is a member of M function if E is any subfield of K containing
then F'(a) is a subset of E (since F'(a) is the intersection of members of M
and E is the members of M)

Thus F'(a) is a subfield of K containing both F' and ‘a’ and itself and it
is contained in any subfield of K containing both F' and a. .. F'(a) is the
smallest subfield of K containing both F' and a.

We call F(a), the subfield of K obtained by adjoining ‘a’ in F. Our
assumption of F'(a), so for has been purely an external one, we now give an
alternative and more constructive description of F'(a)

Suppose K is an extension field of F'. Let a € K and

apa” + a1a” M 4 L+ oy,
50(1’“ + ﬁlam—l + ...+ 511

where m and n non-negative integer. Clearly U is a subfield of K. It can
be easily seen that

U={ la;B; € F,Boa™ + B1a™ ' + ... + B, # 0},

(i)a,peU=a—-peU

(ii)an,O;éBeUi%eU.

Then U is a subfield of K. Claim: U = F(a). Clearly U contains both F'
and a. . U is a subfield of K containing both F' and a. (i.e.) U contains
F(a)..... (1) [Since F(a) is the smallest subfield of K containing both F'
and a|. Further any subfield of K which contains both F' and a by virtue
of closure under addition and multiplication must contain all the elements
apa” +a1a” M4+ . 4+ a, =0

Since F'(a) is a subfield of K contain both F' and a, F'(a) must contain all
such elements being a subfield of K. .. F(a) must also contain U....... (2)
From (1) and (2), F(a) =U.

Theorem 5.13 The element a € K is algebraic over F iff F(a) is a finite
extension of F. [(i.e.) [F(a) : F] is finite iff a € K is algebraic over F|

Proof: Suppose F(a) is a finite extension of F'. Let [F'(a) : F] = m where m
is finite. To prove: a € K is algebraic over F. Since F'(a) is a field and a €
F(a), the (m+1) elements 1,a,d?, ..., an, are all in F(a). Since the dim F(a)
as a vector space over F'is m. [ [F'(a) : F] = m] .. These (m + 1) elements
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of F(a) are linearly dependent over F. . there exists ag, a1, a9, ...,ap, € F,
not all zero such that ag - 1 + aga + aga® + ... + apma™ = 0...... (1)

Letp(z) = ap + a1z + ... + apa™ € Flz]. By (1) p(a)=0 (i.e.) a satis-
fies a non-zero polynomial in F[z]. Hence a is algebraic over F. Conversely,
suppose that a € K is algebraic over F'. Then a satisfies some non-zero poly-
nomial in F[x]. Let p(z) be a polynomial in F[z] of smallest positive degree
such that p(a)=0. Claim: p(z) is irreducible over F. Suppose not, p(z) is
reducible over F. p(z) = f(x)g(z), f(z),g(x) € Flx], where deg(f(z)) # 0
and deg(g(z)) # 0. Now, 0 = p(a) = f(a)g(a) = g(a)f(a) = 0= f(a) =
(or) g(a) =0 7. f(a),g(a) € F and F is a field F is an integral domain and
has no zero divisor]. Since p(x) is the smallest positive degree polynomial
such that p(a)=0. We have either deg(f(z)) > deg(p(x)) or deg(g(x)) >

deg(p(z)). Thus p(x) = f(z)g(x) where either deg(f(x)) > deg(p(z)) or
deg(g(x)) > deg(p(x)). Which is a contradiction to the minimality of degree

of p(x). This contradiction shows that p(x) is irreducible over F. Define
a mapping ¢ : F[z] — F(a) by (h(z))y = h(a). To prove: 1 is a ho-
momorphism. Let hi(z) and ho(x) € Flz]. Suppose (hi(z))y = hia and
(ho(2))Y) = ha(a),

(h1(x) + ho(x)) = ((h1 + ha)z)
(

= (h1(2))(he(z))¢......(2)
From (1) and (2), ¢ is a homomorphism from F[z] to F(a). Let V =
Kery = {h(x) € F[z]|(h(z))y = 0} where 0 is identity element of F(a).
Claim: V = Kert is an ideal of F[z]|. Let h(x), g(x) € V, then (h(x))) =0

and (g(z))y = 0 = h(a) = 0 and g(a) = 0. Let S(x) = h(x) — g(x).
S(a) =h(a) —g(a) =0= S(z) € V= h(z) —g(z) e V..... (3)
Let h(z) € V and f(z) € F|x], then h(a) = 0. Let t(z) = h(z)f(z); t(a) =

S

h(a)f(a) =0=t(x) € V = h(x)f(z) € V,h(z) € V, f(z) € Flz]. Similarly
f(@)h(z) e V...... (4)

From (3) and (4), V is an ideal of F[x]. Obviously V' # F[z] also p(z) is an
element of lower degree in the ideal V' of F[z|. Since p(x) is irreducible, V'
is a maximal ideal in F'(z). By a theorem, F'(x)/V is a field. By the general
homomorphism F[z|/V is isomorphic to the image of F[zr] we have shown
that the image of F'[x] under v is a subfield of F'(a). This image contain x
=0 and for every a € F, anp = a, thus the image of F'[x] under ¢ is a subfield
of F(a) which contains both F' and a. More clearly F[z]|/V is isomorphic
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to F(a). Let V = (p(x)) be the ideal generated by p(z). The dimension of
F[x]/V as a vector space over F' is precisely equal to the degree of p(x).

In view of this isomorphism we obtained between F[z]/V and F'(a) we get
that,

[Fla]/V 2 F] = deg(p(z))
degr(F(x)/V) = deg(p(x))
degr(F(a)) = deg(p(z))
[F(a) : F] = deg(p(x))

Hence [F'(a) : F] is finite.

Remark 5.14 We have actually proved that more, namely that [F(a) : F|
= degree of the minimal polynomial satisfied by a over F.

Example 5.15 Let F' be a field and Let F[z] be a ring of polynomial in x
over F. Let g(x) of degree n be in Flz] and V = (g(x)) in F[z].Prove that
F[z]/V is n dimensional vector space over F'.

Solution: We have V' = {f(z)g(z)|f(x) € Flx]}; Flz]/V ={V+f(z)|f(z) €
Flz]}. Let V + fi(z), fo(z) € F[z]/V. Then we define (V + f1(z)) + (V +
fo(z)) =V + fi(x) + fa(x). Also, we define scalar multiplication in F[z]/V
over F. Let a € F,V+ f(x) € F[x|/V. Then we define, a[V + f,] = V +af,.
Obviously F[z]/V is an abelian group with respect to addition defined
on it. The residue class V is the zero vector. Further let a,b € F and

fi(x), fa(z) € Flz]. Then,
(i) (a+ D)V + fi(z)] =V + (a+b) fi(z)
=V +afi(z)+bfi(z)
=[V+afi(@)]+[V+0bfi(z)]
=alV + fi(@)] +b[V + fi(z)]
(@) al{V + fi(@)} +{V + fa(2)}] = a[V + fi(z) + fa2(2)]
=V +a(fi(z) + fa(z))
=V +afi(z) +afa(z)
=[V+afi(@)] + [V +afo(z)]
=al[V + fi(x)] + a]V + fo(x)]
(122) alb(V + fi(z))] = a[V + bfi ()]
=V + (ab) f1(z)
= ab[V + f1(z)]
() [V + fil@)] =V +1- fi(z)
=V + filz)

Hence F[x]/V is a vector space over F. Now, if g(z) of degree n then to show
that F[x] is dimension n over F. We claim that V+1,V 4z, V422, ...,V +a"
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constitute the basis of F[z]/V over F. First we shall show that these n
elements of F[z|/V are linearly independent over F. Now we have,

a(V+1D)4+a(V+z)+..+a,(V+2" )=V
V4ag+az+ ..+ ap 12" =V
a+ a1z + ...+ ap_1z" eV

= ap+ a1z + ... + a2 = f(x)g(x) for some f(x) € Flz]

f(x) =0 [.iff(x) # 0 then deg(f(x)g(x)) > deg(g(x)) = n and so we
cannot have f(z) - g(x) = ap + a1z + ... + ap_12" 1]

a+aiz+..+ap 12" '=0=>a=a1=..=ap,_1 =0

V41, V4x, V+a?, ..., V+z" ! are linearly independent over F. Let V+ f(z)
be any element in F[z]/V. Then f(z) € F|x]. By division algorithm there
exists q(z), r(z) € F[z] such that f(x) = q(x)g(z)+r(z) where either r(x)=0
or deg(r(x)) < deg(g(z)). Now,

V+ flz) =V +q(x)g(z) +r(z)
= [V +q(@)g(@)] + (V +r())
=V 4+ (V+r(x))
=V +r(z) (. V is a zero vector)
=V+ao+az+ .. +ap_12"!

where ag, a1, ...,an—1 € F [ r(x) =0 or deg(r(x)) < n (i.e.) deg(g(x))]
V4 flx)=a(V+1)+a(V+a)+..+a,1(V+2"1). Hence V+1,V +
z,...,V + 2" 1 forms a basis of F[z]/V over F. dimp(F[z]/V) = n (i.e.)
[Flz]/V : F] =n.

Definition 5.16 A polynomial p(x) over F of lowest positive degree satis-
fied by a € K is called a minimal polynomial for a over F.

Remark 5.17 .

1. We may assume that its coefficient of the highest power of x is 1, (i.e.)
it is monic; in that case a monic polynomial of smallest degree over F
satisfied by a is called the minimal polynomial of a over F'.

2. a € K is said to be algebraic of degree n over F if it satisfies a minimal
polynomial of degree n over F.

Example 5.18 .

1. Consider the polynomial 2> —3; 22 -3 =0=>2 =+V3. " 22 -3 isa
minimal polynomial of /3 over Q. Clearly, it is monic and it satisfied
by /3 as \/3 is irrational it cannot satisfy the polynomial of degree 1
over Q.
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2. x3 — 2 is a minimal polynomial of cubic root 2 over Q.

Result 5.19 If p(z) is a minimal polynomial of a over F of degree n then
[F(a): F]=n

Proof: Suppose p(z) is a minimal polynomial for a over F' of degree n. Let
p(z) = 2"+ a12™ !t + ...+ an,; € F. . By our assumption,
pla)=a"+a1a" '+ .. ta,=0=a,=(—a1)a" ' + ...+ (—ayn) - 1

(i.e.) ay is a linear combinations of 1,a,a?,...,a" ! and .". a® € L(S) where

S = {1 a,a®,..,a" 1}..... (3)

a"t = (~a ) + (—ag)a™ ! + L+ (—ap-1)a® — apa...... (2)
Sub (1) in (2) we get
a"t = —[og(— (1@t + aga™ 2 + .+ ap)) + a2a™ 1+ L+ agdl
= —[(a2 —a)a™ ! + (a3 — aran)a™ 2 + ... + alan — a1o_1) — 1]
Showing that a"*! is a linear combination of 1,a,...,a” ! over F. Contin-

uing in this way we find that for each k > 0,a"** € L(S) (i.e.) a linear
combination of 1,a, ...,a" !

Claim: L(S) = F(a). F(a) is the subfield of K generated by a over F.
Then F'(a) being a field containing the field F. In order to show that
F(a) is a finite extension of F. We must show that F'(a) is a vector space
over the field F' is finite dimensional. Since F'(a) is the field containing
a, 1,a,a? ...,a" ! are the elements of F(a). Let L(S) denote the set of
all linear combination of S. Then F'(a) being a vector space over F, each
linear combination of elements of F'(a) over F' will be contained in F(a).
Consequently L(S) C F(a). Since L(S) contains both F' and a. It is clear
that L(S) = F(a). Since for each k > 0,a"* € L(S). It follows that the
product of 2 elements of L(S) is a linear combination of 1,a,a?, ...,a" ! and
is therefore contained in L(S). So L(S) is closed for multiplication. Hence
L(S) is a subring of F(a). Since 1+0-a+0-a?+ ...+ 0 ap—1. (i.e.) as
a linear combination of 1,a,a?,...,a" 1. - 1 € L(S). (ie.) L(S) contains
the unit element. Also the product of two non-zero elements of L(S) is 0.
Hence L(S) is a ring with unit element and is without zero divisor. Let
T = F(a). Consider T = {fp + fra + ...... + Bp-1a""1/B; € F}. Clearly T
is closed under addition and multiplication, T" is a ring which contains both
F and a. Claim: T is a field. Let 0 # u = By + f1a + ... + Bp_1a™ !, Let
h(z) = Bo+ fra+ ...+ Bn_1a™" ! € F[z]. Since u # 0 and u = h(a) we have,
h(a) # 0.(i.e.) a does not satisfy a polynomial h(x) and p(x) is the minimal
polynomial satisfied by a = p(z) does not divide h(x) (i.e.) p(z) and h(z)
are relatively prime polynomial in F[z|. Hence we can find polynomial S(z)
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and t(x) in F[z]

= p(x)S(z) + h(z)t(z) =1
But then 1 = p(a)S(a) + h(a)t(a)
= h(a)t(a) [ p(a) = 0]
=ut(a) [ h(a) = u]
u ! =t(a)

Since t(a) is the value of polynomials t(x) at x = a follows that t(a) is a linear
combination of 1, a,a?,...,an—1. Also since a”** is a linear combination of
1,a,a?,...,a,_1 for each k > 0. It follows that ¢(z) is a linear combination
of 1,a,a?,...,an_1; t(a) € L(S) (i.e.) t(a) € T (i.e.) Every non-zero element
of T has its inverse in 7. . T is a field. However T is a subset of F'(a), yet
F and a are both contained in T" which gives T'= F'(a). We have identified
F(a) as the set of all expression By + f1a + ... + Bp—1a" L. Hence L(S)
is a field containing F' and a and itself contained in F'(a). Consequently
F(a) = L(S). Also the set S is linearly independent. Suppose if S is
a linearly dependent. There exists elements «g, a1, ...,ap—1 not all zero
such that ag -1 + aja + ... + ap,_1a" ' = 0 = a satisfy a polynomial,
ag + a1z + ... + ap_12" ! of deg n — 1 which is a contradiction to the
minimality of p(x). This contradiction shows that S is linearly independent.
.8 ={1,a,a?,...,a" '} is the basis of the vector space F(a) over the field
F. (ie.) [F(a): F]=n.

Theorem 5.20 If a € K is algebraic of degree n over F then [F(a) : F] =

n.
Proof: Let K be a finite extension of the given field F'. Suppose a € K is
algebraic over F' of degree n. .". There exists a minimal polynomial p(z) of

degree n over F satisfies a. .. By the above result, [F(a) : F] = n.

Theorem 5.21 If a,b in K are algebraic over F then a £ b,ab and §(b #
0) are all algebraic over F. In otherwords, the elements in K which are
algebraic over F' form a subfield of K.

Proof: Let E be the set of all elements of K which are algebraic over
F. E = {a € Kla is algebraic over F'}. Since each element o € F satisfies
the monic polynomial (x — «) over F, It follows that « € F is algebraic
over F. . FE is not empty and is a subset of K. Suppose a is algebraic
of degree m over F. . a € E and [F(a) : F] = m [by Theorem [5.20].
Let T = F(a) the T is a subfield of K of degree m over F. Suppose b is
algebraic of degree n over F' then it is algebraic of degree almost n over T'
which contains F. (i.e.) T'(b) is a subfield of K and is of degree atmost
n over T. Let W = T(b) then [W : T] < n (ie.) [T(b) : T] < n (i.e.)
[F(a,b) : T] < n = [F(a,b) : F(a)] < n. By Theorem W . F] =
(W T[T : F] (ie)[W : T| = [F(a,b) : F|] = [F(a,b) : F(a)][f(a) : F] =



90 5. UNITV

mn = [F(a,b) : F] = [W : F| = mn. Hence F(a,b) is a finite extension is
an algebraic extension it follows that F'(a,b) is an algebraic extension of F'.
But F(a,b), being a field a,b € F'(a,b) = a£b,ab, (b # 0) € F(a,b) (Since
each element of F'(a, b)is algebraic over F') = a£b,ab, 7(b# 0) € E. Hence
E is a subfield of K. (i.e.) the elements in K which are algebraic over F'
form a subfield of K.

Corollary 5.22 If a and b in K are algebraic over F' of degree m and n
respectively then a & b,ab, 7 (b # 0) are algebraic of degree atmost mn.
Proof: Since a € K is algebraic over F' of degree m, [F(a) : F] = m. Since
b € K is algebraic over F of degree n,[F(b) : F| = n. Then the minimax
polynomial over F' of degree n satisfies b. But F'(a), being a subfield of
F', the minimal polynomial over F'(a) satisfies b is of degree atmost n. Let
T=F(a)and W =T(b) .. [W:T]<n; [F(a,b): F(a)] <n. By Theorem
[F(a,b) : F] = [F(a,b) : F(a)][F(a) : F] < mn .. F(a,b) is finite
under algebraic extension of F' of degree not exceeding mn. Consequently
each element of F(a,b) is algebraic of degree not exceeding mn. Moreover
F(a,b), being a field, atb, ab, § (if b # 0) € F(a,b). Hence a£b, ab, (b # 0)
are algebraic of degree at most mn over F.

Definition 5.23 The extension K of F is called an algebraic extension of
F if every element in K is algebraic over F.

Theorem 5.24 If L is an algebraic extension of K and if K is an algebraic
extension of F', then L is an algebraic extension of F'.

Proof: Let w be an arbitrary element of L. To Prove: L is an algebraic
extension of F', it is enough to prove that u is algebraic over F. (i.e.) To
Prove: It satisfies some non trivial polynomial whose coefficients are in F'.
Since u € L and L is an algebraic extension of K, u satisfies a non trivial
polynomial z” + o12" ! + 092" 2 + ... 4+ 0, where 01,09, ...,0, € K. But
K is an algebraic extension of F' . 01,09, ...,0, are algebraic over F. By
several uses of Theorem M = F(o1,09,...,0,) is a finite extension
of F. Since u satisfy the polynomial z" 4 o12" ! 4 ... + 0, where co-
efficient 01,09,...,0p, are in M = F(01,09,...,0,). .. u is algebraic over
M using theorem M (u) is finite extension of M. By Theorem
[M(u) : F] = [M(u) : M|[M : F]. M(u) is a finite extension of F' and w is
an algebraic over F'.

Definition 5.25 A complex number is said to be algebraic number if it is
an algebraic over the field of rational number.

Example 5.26 Let a =2+ 3i then (a —2)? = (3i)? = a®> +4—da = -9 =
a’> —4a +13 = 0. Now, p(z) = 22 — 42+ 13. . a = 2 + 3i satisfies
a polynomial over the field of rational numbers. .. 2+ 3i is an algebraic
number.
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Example 5.27 (a) Let R be a field of real numbers and Q field of rational
numbers in R,v/2 and /3 are both algebraic both algebraic over Q exhibit a
polynomial of degree 4 over Q satisfied by /2 + /3.

(b) What is degree of v/2 + /3 over Q.

(c) What is the degree of \/3v/2 over Q.

solution: (a) Given v/2 € R algebraic over Q and the element v/2 € R
satisfy the polynomial, 22 — 2 = 0 over Q and 22 — 2 is an irreducible. The
degree of algebraic of v/2 over Q = deg(x? — 2). /2 is algebraic of degree 2
over Q. [Qv2: Q] = 2. Similarly v/3 is algebraic over Q. /3 € R satisfies a
polynomial 22 — 3 over Q. v/3 € R is an algebraic of degree 2 over Q.

[QV3:Q] =2
Let =3+ V2
=z -V3=12
= (r—V3)?=2

=22 —-2V3z+3=2
éw2+1:2\/§m
= (22 +1)2 =4 322
=zt 4+ 14222 = 1222
=zt —10224+1=0

Let p(z) = 2% — 1022 + 1

which is the required fourth degree polynomial satisfies v/3 + v/2 over Q.
(b) V2+ V3 € Q(V2,V3):

We shall now prove the converse. Since Q(v/2 + v/3) is field,

(V2+V3)3 =11v2 +9v3 € Q(vV2 + V3)
Also —9(V2+V3) € Q(V2 + V3)
1/2[(11V2 4+ 9v3) = 9(V2 + V3)] = V2 € Q(vV2 + V3)
VE+VE-VI—VEeQWE+ V)
Thus v2,V3 € Q(V2 + V3)
Q(V2,V3) € Q(V2 + V3)
Hence Q(v/2,v3) = Q(v2 + V3).

Let L = Qv/2 then [L : Q] = 2. Also 22 — 3 is an irreducible polynomial
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over L satisfied by \/3,

[LV3: L] =2
Now [Lv3:Q] = [LV3 : L][L : Q]
=2.2=4
Let L(v3) = (QV2)v3 = Q(V2,V3)
=Q(V2+ V3)

[Q(vV2+V3):Q] =4

= /24 /3 is of degree 4 over Q.
(c) Let a denote the field of rational numbers. Let K = Qv/2; L = K+/3.
Now, [L: K|=2 and [K : Q]=2. To find [L : QJ,

[L:Q]=[L:K]K:Q]
L=KV3
= (QV2)(V3)
= Q(vV2V3)
[L:Q]=[Q(V2v3): Q)
=[L:K|[K:Q=2-2=4.

Example 5.28 With the same notation as in above problem. Show that
V2 + /5 is algebraic over Q of degree 6.

Solution: Let /2 + /5. To prove: [Q(a) : Q]=6. Given v/2 € R algebraic
over Q and the element v/2 € R satisfies the polynomial 22—2 = 0 over Q and
22 —2is an irreducible. The degree of algebraic of v/2 over Q = deg(z?—2) =
2. (i.e.) V2 is algebraic of degree 2 over Q. (i.e.) [Qv2 : Q]=2. Similarly
5 algebraic over Q. 5 € R satisfies a polynomial x = V5= x= 51/3 =
23 =5= 2% —-5=0} over Q and x® — 5 is an irreducible. The degree of
algebraic of ¢/n over Q = deg(z® —5) = 3.

[QV5:Q=3

Let z = V24 V5
=r—-V2=V5
(-2 =5

= (z —V2)(z® — 22vV2+2) =2
:>x3—2\/§x2—\@m2+2m+4x—2\@:5
= 23— 3vV22% + 62 —2v2=5
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= 2% + 62 =[5+ V2(2 + 32%)]
(z® + 62 — 5)% = [V2(2 4 32%))?
= 25 + 3622 + 25 + 122% — 602 — 1027 = 2(4 + 92 + 122?)
= 28 + 62* — 102 + 1222 — 602 — 8+ 25 =0
= 2% 4+ 62* — 102° + 1222 — 60z + 17 =0

Now, p(z) = 2% + 62* — 1023 + 1202 — 602 + 17 = 0 € Q[z], which satisfies
(V2 +V/5). [Q(v2+ V/5) : Q] = degree of p(z) = 6. (v/2+ V/5) is algebraic
over QQ of degree 6.

Roots of Polynomials:

Definition 5.29 If p(z) € F[z] then an element a lying in some extension
field F is called a root of p(x) if p(a) = 0.

Lemma 5.30 Remainder theorem: If p(z) € F[z] and if K is an ex-
tension of F' then for any element b € K,p(x) = (z — b)q(z) + p(b) where
q(z) € Flz] and deg(q(z)) = deg(p(x)) — 1.

Proof: Since F C K, F[z] C Klz|; p(z) € Flz] = p(x) € K[x]. Since
the polynomial p(z) and (z — b) are both in K|z], we can apply division
algorithm for this polynomial. .. there exists polynomials ¢(x) and r(x) in
K{[z] such that p(x) = (z —b)q(z) +r(x), ¢(x) € K[z], where either r(x) =0
or deg(r(x)) < deg(z —b). (i.e.) in either case r(r) must be a constant
in K[z]. Let r(z) = r € K (i.e.) r must be an element in K. Since
p(x) = (& — b)g(x) + 7, let p(b) = r = p(x) = (& — b)q(x) + p(b).-.-(1)
Suppose deg(p(z)) = n and deg(q(z)) = m. From (1) deg(p(x)) = deg(p(z)) =
deg(x — b)q(z) + deg(p(b)) = n=1+m+0=m=n—1= deg(q(x)) =
deg(p(x)) — 1.

Corollary 5.31 Factor Theorem: Ifa € K is a root of p(z) € F[x] where
F C K then in K[x], (x — a)/p(z).

Proof: Let p(z) € Fz] and a € K where K is an extension of K. Then by
Remainder theorem in K[z], we have p(z) = (z—a)q(x)+p(a) = p(x) = (x—
a)q(z)+0 (.-aisaroot of p(x)) = p(z) = (r—a)q(x) = (x—a)/p(x) € K|z].

Definition 5.32 The element a € K is a root of p(x) € F|x]| of multiplicity
m if (x — a)™/p(z) where (x — a)™ " /p(x).

Lemma 5.33 A polynomial of degree n over a field can have at most n
roots in any extension field.

Proof: We prove this theorem by induction on n, the degree of the poly-
nomial p(x). Let p(x) be a polynomial of degree 1 over any F. Let p(x) =
ar+ f,a,0 € F and a # 0. Let a be a root of p(x) in some extension of F'.
Then p(a) =aa+ B =0=aa+ = a=—F/a(a #0). In this case p(z)
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has the unique root —(3/«) (i.e.) p(x) has one and exactly one roots in any
in any extension field of F. The theorem is true when p(z) is of degree 1.
Assuming that the result is true in any field for all polynomial of degree less
than n. Let us suppose that p(x) be a polynomial of degree n over F. Let
K be any extension of F. If p(x) has no roots in K ,then the theorem is
obviously true, because the number of roots in K is zero which is definitely
at most n. So, let us suppose that p(x) has at least one root, say a € K.
Let a be the root of multiplicity m then in K[x],

(x —a)™/p(x),m < n....... (1)

= deg((z —a)™) < deg(p(x)) = m < n. Since (x —a)™, is a divisor of p(x)
in K[z]. We have p(z) = (x — a)™q(x) where ¢(z) € K[x] = deg(p(x)) =
deg((z—a)™)-+deg(q(z)); deg(q(z)) = deg(p(z))—deg((z—a)™) = (n—m) <
n (1 < m < n). Now, a is a root of p(x) of multiplicity m. we have,
(x — @)™ does not divides p(z) = (z — a)™q(z)...... (2)

= (z — a)™*! does not divides (z — a)™!q(z) = (x — a) does not divides
q(z) [if (z —a)/q(z) then (x — a)™"1/p(z) =<« to2]. . a is not a root of
q(z). If b# a is a root of p(z) in K then, 0 = p(b) = (b — a)™q(b). Since K
is a field and 0 # (b—a)™ € K and ¢(b) € K, we have ¢(b) =0 = b is a root
of ¢(z) in K. .. Any root of p(z) in K other than a must also be a root of
q(z) in K. Since deg(q(x)) = n —m < n, by our induction hypothesis, g(x)
has atmost n —m roots in K other than a. .. p(x) has atmost (n —m)+m
roots in K. (i.e.) p(x) has atmost n roots in K. ... The root a if p(z) of
p(z) of multiplicity m being counted m times. .. By induction hypothesis
the lemma follows.

Theorem 5.34 If p(x) is a polynomial in Flz| of degree n > 1 and is
irreducible over F, then there is an extension E of F such that [E : F] =n
in which p(x) has a root.

Proof: Let F[x] be the ring of polynomial in x over F. Let V = (p(x))
be the ideal generated by p(z) € F[z]. Then V is a maximal ideal of F[z].
Hence by Theorem 3.38. .. F[z]/V = E(say) is a field. We shall show that
the field E satisfies all the requirements of the theorem. First we shall show
that E can be regarded as an extension of F. Even though E does not
contain the the elements of F' in their original form, for this, we shall show
that the field F' can be embedded in the field E. Let F be the image of F
in . Let v : F — E defined by atp =V + a,a € F.

() ¥ is 1-1:
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Let o, 8 € F such that ay = G,
V4+a=V+p
(@—f) eV =px)
(a = B) = f(@)p(x) for some f() € Fla]

= f(z) =0

= (a—p)=0

=a=0
Pis1—1.

(ii) v is homomorphism:

(a+ By =V +(a+ )

=V+a)+(V+D)

= atp + Py
.. 1 is a homomorphism.
Thus 9 is an isomorphism from F' into E. Let F be the image of F' into K
under 9. Let F' = {a+ V|a € F}. Thus ¢ is an isomorphism of F onto F'
and F is a subfield of E isomorphic to F' by the mapping v : F[z] — E, by
f(z) = f(x) +V and the restriction of ¢ to F' induces an isomorphism of
F onto F. If we identify F and F under this isomorphism we can consider
E to be an extension of F.
Claim: E is a finite extension of F' of degree n equal to degree of p(z). First
we shall prove that the n elements {1+V,2+V, (z+V)? = 22+ V, (z+V)3 =
23+ V,.,(x+ V)"t =2t + V} form a basis of E over F. [E: F| = n.
Finally we shall show that p(z) has a root in E. Let p(x) = By + Sz +
Box? + ... + Bra® where Bo, 1, Bo, ..., Bx € F. First Let us make p(z) be a
polynomial over E with help of the identification we have made between F
and F. For convenience of notation Let us denote the element z1) = z + V
in the field E as af by Br+V,p(x) = (Bo+ V) +(B1+V)z+ ...+ (Br + V).
We shall show that x +V € E satisfies p(z).

ple+V)=Bo+V)+Br+ V)@ +V)+ o+ B+ V)(x+ V)F
=Bo+WM)+BrAWVa+V)+ B+ V)2 +V) + ..
+ B+ V)" +V)
= (Bo + Brz + Box® + ... + BraF) + V
=p(x)+V
=v (. plx)eV)
= zero element of F.

Thus (x4 V) satisfies p(x). .. An element x4+ V in the extension E satisfies
the polynomial p(x) € F[z]|. The field E has been shown to satisfy all the
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properties required in the conclusion of the theorem.

Corollary 5.35 If f(x) € Fl[z| the there is a finite extension E of F in
which f(z) has a root. Moreover [E : F] < deg(f(x)).

Proof: Let p(z) be an irreducible factor of f(z). Let f(x) = p(z)q(x). ..
deg(p(z)) < deg(f(x)). Let a be a root of p(x) in some extension field
K of F. Then p(a) = 0 = f(a) = p(a)g(a) = 0 = f(a) = 0. Thus
any root of p(z) in some extension field of F' is also a root of p(z) in that
extension field. Since p(x) is irreducible over F, by the above theorem,
[ : F] = deg(p(x)) < deg(f(x)) = [ : F] < deg((x).

Theorem 5.36 let f(x) € F[z] be a polynomial of degree n greater than or
equal to q then there is an extension of E of F' of degree atmost n! in which
f(x) has n roots.

Proof: We shall prove this theorem by induction on n the degree of f(z).
Let f(x) € Flz] of degree 1. Let f(x) = apx + ap,a € F,ap # 0. Now
F itself is an extension of F. . [F : F] =1 (ie.) [F : F] < 1. Now,
flx) =apx+ap=0=x = —a/ap € F,ap # 0 is a root of f(z) = apx + a.
Thus if degree of f(z)=1. There is a finite extension F of degree atmost
1=1!. ... The result is true for n=1. Now assume by our induction hypothesis
that the theorem is true in any field for all polynomials of degree less than
n. Let f(x) be a polynomial of degree n over a field F'. By Corollary
there is an extension Ey of F' with [Ep : F| < deg(f(z)) in which f(z) has
a root, a(say). .. By remainder theorem, in Ey[z], f(z) can be factored as
f(z) = (x — a)q(z) + (o) where deg of g(x) = deg(f(z)) —1=(n—1)<n
(i.e.)deg(g(x)) < n .. By induction hypothesis there is an extension E of
degree atmost (n —1)! (i.e.) [E : Ey] = (n— 1)! in which ¢(z) has n-1 roots.
Since any root of f(x) is either a or a root of g(z). .. In E we obtain all n
roots of f(x). Since E is an extension of Ey and Ej is an extension of F', we
have, F is an extension F' . [E: F| < [E: Ey|[Fo: E]=(n—1)n=n!=
[E : F] <nl. Thus F is an extension of F' of degree atmost n! in which f(z)
has n roots.

Remark 5.37 The above theorem asserts that the finite extension E of a
given field F' in which the given polynomial of degree n over F' has n roots.
Let f(x) = apx™ + a12" ' + ... + an,a0 # 0 € Flx]. Let aj,az,...,a, ben
roots of f(x) in E. . By Corollary f(x) can be factored over E as
fl@)=ap(zr—a1)(xr—az---(xr—ay). Thus f(x) splits of completely over E
as a product of linear factors such a finite extension of F' of minimal degree
in which f(z) splits of completely over E as a product of linear factor exists
for such minimal extension improper subfield has the property.

Definition 5.38 If f(z) € Flxz], a finite extension E of F is said to be
a splitting field over F for f(x) if over E[F(x)] but not over any proper
subfield of E. f(x) can be factored as a product of linear factors.



97

Remark 5.39 The above theorem guarantees the existence of splitting field.
Equivalent definition of splitting field for f(x) over F':

E is a splitting field of f(x) over F if E is a minimal extension of F in
which f(z) has n roots where n = deg(f(x)).

Remark 5.40 A minimal extension E of a field F is said to be splitting
field of f(z) € Flz| if f(x) € Flz] is expressible as f(x) = ag(x — a1)(x —
) - -+ (v — ) where f(z) = apx™ + a2 ' + ... +an,a; € F and E =
F(ag,ag,...,an), ag,...,an € E.

Note 5.41 Let E1 and Ey be two splitting fields of the same polynomial
f(x) in Flz|. We shall show that they are isomorphic by an isomorphism
leaving every element of F' fized.

An isomorphic mapping:

Let F and F’ be two fields and let £ and E’ be the extension fields of F
and F”’ respectively. An isomorphism o : E — E’ is called a continuation
of an isomorphism ¢ : F — F', (a)o = (a)y Yar = a € E. Let 7 be an
isomorphism of F' onto F’ for convenience let us denote the image of any
a € F under 7 by o (ie.) ar =d.

Remark 5.42 In the fallowing result we can make use of T to set up an
isomorphism between F[x] and F'[t].

Lemma 5.43 Let 1 be an isomorphism of a field F onto a field F' such
that ()7 = o'. Show that there is an isomorphism 7 of F[x] onto F'[t]
with a property that (o) = o' Ya € Fz].

Proof: Given 7 is a isomorphism of F onto F’. For any a € F we
write ()7 = o/. Let us define 7* = F[z] — F'[t] as follows, let f(z) =
apz™ + aqz™ 1 + ... + a,,. Define

(f(z)T* = (z™ + ™' + .. + a,) T
= (o) t" + (™)t L+ . 4 (anT)
= apt" +ajx" T 4L+

= f'(t)(say)

we shall show that 7% is 1-1. Let f(z) = apz™ + ayz™ ' + ... + o, and
g(z) = Box™ + B12™ 1 + ... + B be any two elements in F[z]. Suppose
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(f(@))7* = g(z)7"
= (" + oz L+ L+ )T = (Bor™ 4 ™ 4+ BT
= apt" + ha" 4 al, = Bt 4 B L+ B,
=n=mand o, =3,i=0,1,..n
=n=m and (a;)7 = (5;)7,i =0,1,2...n
=n=mand o; = f;,i=0,1,2...n (" 7 is 1-1)

f(z) = g(x)

7+ is onto: Let v)t" + vjz" ! + ... + 19/, be any element of F'[t],7, €
F’ since 7 is onto, there exists v9,71,...,7n € F such that (yo)7 = 7,
()T = A, ()T = 4. Now Aox™,maz™ b ..y, € Flz] and
(Yo", 1™, )T = (Wt + A 4+ L), LT s onto.

*

7% is a homomorphism: To Prove: (f(x) + g(z))7* = f(z)7* + g(z)7*

[f(z)+g(2)]r™
= [z + arz™ T+ . an + Box™ + Br™ 4 4 Bl
= ((apa™ + o™ ™"+ af) + (Bpa™ + B2+ o+ )
= (" + oz L+ L+ an) T + (Bor™ 4 Biz™ 4 o+ B) T
= flx)m" +g(x)m"

Hence 7* is an isomorphism of F[x] onto F'[t].

Remark 5.44 .

1. Further if f(x) € Flz| be simply taken as o where o € F then
(flx)T* =ar* =ar =d.

2. From the above theorem we conclude that factorisation of f(x) in F|x]
result in like factorisation of f(x)T* = f'(t) in F'[t] and vice versa.
In particular f(x) is irreducible in Fx] iff f'(t) is irreducible in F'[t].

Lemma 5.45 Let 7 be an isomorphism of a field F' onto a field F' defined
by ()T = ' Va € F for an arbitrary polynomial f(z) = (apx™ + cyz™ ! +
.hay) € Flx]. Let us define f'(t) = ajt®+ajz" 4.4+, € F'[t]. If f(z)
is irreducible in F[z], show that there is an isomorphism 7 of F|x]/f(x)
onto F'[t]/ f'[t] with the property that at™* = o/ (x + f(x))T** =t + f'(¢).
Proof: Let 7* : Flz] — F'[t] defined by f(z)7* = f'(t). Then by Lemma
7* is an isomorphism of F[z] onto F'[t]. Let f(x) be irreducible in F[z]
then f/(t) will be irreducible in F'[t]. V = (f(z)) ideal generated by f(z)
in Flz] and V' = (f'(t)) ideal in F'[t]. Now, f(z) and f'(¢) are irreducible
both V and ¢’ are maximal ideal. F[z]/V and F’[t]/V are fields. Define
T Flz]/V — F'[t]/V' by (g(z) + V)T™* = g(z)T* + V' =4 (t) + V.

7** is well defined: For this we have to show that if V + g(z) =V + h(z)
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then [V 4 g(z)]7** = [V + h(x)]7™*, g(z),h(x) € F|z]. We have V + g(z) =
V+h(z)=gx)—h(z) e V=g ( ) h(z)] = [k(z)f(z)] where k(x) € F[z]
l9(z) — h(z)]7" = [k(z) f(2)]T"
= g(x)7" = h(z)T" = ((l‘))T* f(@)7”
=g'(t) - (t)zk‘(t) f't)
=g'(t) - h'({t)eV
=V+d@t) =V +1 (1)

= IV +g@)r™ = [V + h(@)]r*
.7 is well defined.
7 is 1-1: Let g(z), h(x) € F[z].

[V + g(@)]7™* = [V + h(z)]7™
Vi4+4'(t) =V +1'(¢)

g'(t) —n'(t) eV’
g t)—n(t) =K (@) f'(t) for some k' (t) € F'[t]
= g(x)7" — h(z)m" = (k(z))7"(f(z))7"
(9(x) = h(z))m" = (k(x) - f(x))7"
= g(x) — h(z) = k(z) f(x)
= g(z) —h(z) eV
=V +g(x) =V +h(z)
= 7ris1-—1.
T** is onto:
Since the mapping 7* is onto. .". corresponding to any polynomial ¢'(t) €

F[t]

we have a polynomial g(z) in F[z], V' + ¢ (t) € F'[t]/V' = V 4+ g(z) €
Flz]/V such that [V + g(z)]7™* = V' + ¢/(t) = 7** preserves addition and
multiplication. Let g(x), h(x) € F[z], we have

[(V 4+ g(x) + (V + h(2)]7™ = (V + g(2)

Also, [(V +g(x)) + (V + h(x))]m™ = [V + g(z)h(x)]T™

=V g(1) (1)
= [V'+ (0] [V + 1 (1)
= [V +g(z)]7™[V + h(x)]T™*
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Thus 7* is an isomorphism of F|z]/V onto F'[t]/V’. In Theorem [5.34]
we have shown that F' can be imbedded in field F[z]/V by identifying the
element o € F' with the residue class (coset) V 4+« in F[z]/V. Similarly we
can consider F’ to be obtained in F'[t]/V’ with this identification for any
a € F we have at™ = (V4 a)7™* =V + (a)7* = V' + o = o/ (¢ has been
identified with V' + «).

Example 5.46 Let I be any field and let p(x) = 2? + ax + B.o,, B be in
F[z]. Let K be any extension of F.
By Lemma p(z) has a root in K[z]. .. p(a) = 0.

0=pla) =a®+aa+p
B =—ala+ )

Letb=—-a—a e K

Soa=—(a+b)....(1)

p(b) =b*+ab+p
=(a+a)’—a(a+a)—ala+a)
=ao?+a®> 4200 — aa —o? —a® —aa
=0

c.bis root in K

Case(i): Suppose b= a. Then, p(x) = 2*+ax+ = 2> —x(a+b)—a’—aa =
2?2 — z(a + b) + ab. Since b = a, p(z) = 22 — 2ax +a® = (v —a)? =
(x —a)(z —a). .. both the roots of p(x) are in K.

Case (ii): Suppose b # 0. Then,

p(z) =2*+ (—a—bx+ala+bd) —a
=224 (—a—bz+ala+b—a)
=22+ (—a—b)z + ab

a

. a and b are the roots of p(z) consequently p(xz) can be splitted by an
extension of degree 2 over F'.

Remark 5.47 We could also get this result directly by invoking Theorem
12,50l

Example 5.48 Let F be the field of rational numbers and f(x) = x3 — 2.
In the field of complexr number. Determine the degree of the splitting field of
this polynomial f(x) over F.

Solution: Given F is a field of rational number. Let f(z) = 232 € F[z] =
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Qlz]. In the field of complex number we can find 3 roots of f(x) as follows.

fz) =
2 —2=
a?=2-1
23 = 2[cos0 + isin0]
23 = 2(cos2km + isin2km)
z =23 (cos2km + isianﬂ')%
x = 2%(005(%7#) + Zsm(%%))

Put £=0,1,2..., then the roots are
1 . 1
k=0= z1 =23(cos0 + isin0) = 23

2 2
k=1=x9= 2%(cos(§) + zsm(?ﬂ))

5
=23[-1+ Q]
2
4 4
k=2=x3= 2%(005(5) + Zsm(g))
= 23 (cos(240°) + isin(240°))
= 23 (cos(270° — 30°) + isin(240° — 30°))
= 23 (—sin(30°) + i(—cos30°))
1 1 31
=23(—= — —
. 3i
=23(—1 - =
3( 5 )
.. The roots are 2%,2%w,2%w2, where w = —1 + @ and w? = —1 — @

and 23 is a real cubic root of 2. The polynomial f(x) is irreducible over
Q by Eisentien criterion. Since 23 is root of f (x), 23 is algebraic over F' of
degree 3. . [F(2'/3) : F]=3 by Theorem Let F' be the splitting field
of f(x) over F the field F of 2'/3 cannot splits f(x) because as a subfield of
real ﬁ?ld it cannot contain the complex number but not real numll)er w - 25.
. f(23) will be a proper subfield of E so we have [E : F] > [F(23) : F]=3.
Also by Theorem [E: F] < 31=6 = [E: F| = |[E: F(23)]|[F(25) : F]
(by Theorem = [F(Z%) : F]/|[E : F] = 3/6. ... We must have [E : F] =
6. .. E is the splitting field of f(x) over F' of degree 6.
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Example 5.49 Let F be the field of rational numbers and let f(x) = x* +
22 +1 € Flx] prove that E = F(w),w = —1+ @ is a splitting field of f(x)
over F' and prove that [E : F]=2.

More about roots

Definition 5.50 If f(x) = apa™ + a2 1+ + @™+ a1+
in F[x], then the derivative of f(x), written as f'(x), is the polynomial
f(z) = nagz™ 1+ (n—1)ax" 2+ ...+ (n—i)oya™ "+ .+, in Fla].

Definition 5.51 A field F is said to be characteristic zero if ma # 0 for
a # 0 in F and m > 0 an integer. If ma = 0 for some m > 0 and
some a # 0 € F then F is said to be of finite characteristic. If there
exists a smallest positive integer p such that pa = 0 for all a € F then the
characteristic of F' is p.

Remark 5.52 .

1. If F is of finite characteristic then its characteristic, p is a prime
number.

2. If F be a field of characteristic p # 0, in this case the derivative of a
polynomial 2P, pxP~" = 0 thus the usual result from the calculus that a
polynomial whose derivative is zero must be a constant no longer need
hold true.

3. Howewver if the characteristic of F is zero and if F'(x) =0 for f(z) €
F, it is indeed true that f(x)=constant (i.e.) f(x) = a € F. FEven
when the characteristic of F' is p # 0 we can still describe the poly-
nomial with zero derivative. If f'(x)=0 then f(x) is a polynomial in
xP.

Lemma 5.53 For any polynomials f(x),g(x) € Fx] and only o € F.
1 (f(z) +9(z)) = f'(z) + ¢ (2).
2. (a(f(2))) = af'(z).
3. (f(@) +9(x)) = f'(x)g(x) + f(z)g (z).

Proof: (1) Let

f@)=an+an 124 o+ ()™ e Q™+ ™
(m—1) (m+1)

+ ... + apx™ and
g(flf) = Bm + Bmflx + ﬁm72$2 + ...+ BQ[L‘m_Q + Bll‘m_l + Bol»m
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Assume that n > m
f() +g(x)
= (an + Bm) + (n—1 + Bm—1)x + ... + (0—m+1 + Bl)xm_l
+ (ap—m + Bo)x™ + A1 2™ a2 4 apr”
(f(z) + g(a))’
= (an_1+ Bm-1) + 2(an—2 4 Bm—2)x + ... + (m — 1)(n_ms1 + B1)z™ 2
+ m(an—m + Bg)xm_l + (m+ Dap—m_12™ + ... + (n — 1)a1x"_2

+ nagz™ !

= (ap-1 + 202z + ... + (m — l)ozn,(m,l)x”%2 + map_mz™ !
+ (m+Dapm12™+ ... + (n — Doz" 2 + napz™ 1)
+ (Bm-1 + 2Bm_oz + (m — 1)B12™ % + mBoz™ 1) where n =m

= f'(z) + g'(x)
(2)
a(f(x)) = aay, + aoy 12 + ... + ap_pm1 2™+ g™
+ aty—mo1 2™+ .+ acpa™
(a(f(2))) = acn_1 + 200,22 + ... + (M — Dy _mi1z™™

+ Moy, _mz™ 4+ (m 4 Doy meo12™ 4 ... + naogz™

2
1

= a(ap-1 + 2ap—2x+ ...+ (m — l)an,(m,l)xm_Q + My mar™

+ (m+ Dop_m12™ + ... + napz™ 1)
=af'(z)

(3) To Prove this part it is enough to prove it in the highly special case,
f(z) = 2" and g(z) = 27 where i and j are positive. g(x)f(z) = 2'*7. Then,

Remark 5.54 If f(z) and g(x) in Flz| have a non trivial common factor
in K[z], for K an extension of F then they have a non-trivial common
factor in Flz]. For where they relatively prime as elements in F[z], then
they would be able to find two polynomials a(x) and b(x) in F[z] such that
a(x)f(x) + b(x)g(x)=1. Since this relation holds for those elements viewed
as elements of K|[x], in K[z] they would have to be relatively prime

Lemma 5.55 The polynomial f(x) € F[x] has a multiple root iff f(x) and
f'(z) have a non-trivial (i.e. of positive degree) common factors.
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Proof: From the above remark, just may, we may assume without loss of
generality, the roots of f(x) are all lie in F' (otherwise extend F' to K, the
splitting field of F'). Suppose f(x) has a multiple root « of multiplicity m >
2. Then f(z) = (r — a)™q¢(x) and q(a) # 0, q(z) € K[z].

2 f'(@) = m(z = a)"g(2) + (2 — )¢ ()
= (z = a)((z — )" *mg(z) + (z — )"/ (x))
=(x—a)-r(x) (-m>1)
where 7(z) = (z — @)™ 2mq(z) + (z — &)™ ¢/ (z).

Also f'(a)=0 (i.e.) ais a root of f'(x). .. f(z) and f’(x) have the common
factor z — a.. Conversely, suppose that f(z) and f’(z) have a non trivial
common factor. To Prove: f(z) has a multiple root. Suppose not, (i.e.)
f(x) has no multiple root. Then f(z) = (z — a1)(z — a2) - - - (x — o) Where
a;’s are all distinct (We assume that f(z) to be monic)

fl@)= (2 —a)(z —az) - (& = an) + (z = ar) (@ —az) - - (z — ay)

+(w—a1)(x—a2)--~(x—~an)
(@ —on)(w—ag) - (z— i) (z— o),
=1

(2

where ~ denote the term is omitted. Claim: No root of f(x) is a root of
f'(z) (ie. f(z) and f'(x) have no common factor)

f'(ei)
= (041 — ag)(al — 043) s (a1 — Oén) + (042 — al)(ag — 043) coee (a2 — Oén)+
(a3 —a1)(ag —az) -+ (a3 — an) + (an — a1)(an — az) - - (an — ap-1)
= [T — ) #0 (i # a for i # j)
J#
This show that f’(x) =0 holds if one of the roots aq, g, ..., o, is a multiple
root of f(z). However if f(z) and f’(z) have a non trivial common factor,

they have common root, namely, any root of this common that f(x) has a
multiple root.

Corollary 5.56 If f(z) € F[x] is irreducible, then
1. if the characteristic of F' is zero, f(z) has no multiple root,

2. if the characteristic of F' is p # 0, f(x) has a multiple root only if it
is of the form f(x) = g(xP).

Proof: (1) Let f(z) = apz™ + a1 ' + ... + ap_17 + ay, a0 # 0 be an
irreducible polynomial of degree n > 1 over a field F of characteristic zero.
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Then f/(z) = napz™ *+(n—1)a12™ 2+...4-an—1. Since F is of characteristic
zero and ag # 0, then nag # 0. . f'(x) # 0, also deg(f'(x)) < deg(f(x)).
To Prove: f(x) has no multiple root. Suppose if possible f(z) has a multiple
root (say «). Then by above lemma, f(z) and f’(z) have a non-trivial
common factor and hence f(z)/f'(z). But f'(z) # 0 and f(z) and f'(z)
both being irreducible with deg f'(x) < degf(z). This shows that f(x) does
not divides f'(z)

=< to f(x)/f'(z) (i.e.) if a is not a root f(x) then « is not a multiple root
of f(x) hence f(x) has no multiple root.

(2) In this case characteristic of F' is p # 0. Suppose « is a multiple root
of f(z). Let f(z) = ap + a1x + ... + apa™, a, # 0. Let f'(z) = a1 +
2007 + ... + na,z" 1. Now, since f(x) has a multiple root, f/(z) =0 (i.e.)
a1+ 2098 + ... +napz” 1 =0=0+0z+ 022+ ... + 02" ! = a; = 2ay =
3ag = ... = nay, = 0 (i.e.) for any k,1 < k < n,kax = 0. Since F is of
characteristic p > 0,p/k or a; = 0. Thus when f’(z) = 0 we see that if for
any k.ap # 0 then p/k = k = k1p. That means f(z), if any term azz* has
ag # 0 then it is of the form ay,,z"P = ay,,(zP)* so that f(z) is of the
form By + B1aP + Ba(aP)? + ... + Bu(xP)" for some positive integer n then
f(z) € F[zP]. f(z) is of the form g(zP).

Corollary 5.57 If F' is a field of characteristic p # 0 then the polynomial
2" —x € Flx] forn > 1 has distinct roots.

Proof: Let f(z) = 2" — x. Then f'(z) = p"a?"  —1...... (1)

Now p € F, we mean 14+1+...4+1 (p times). Since F' is of characteristic p,
the order of element of the additive group of F'is p, p=1+1+...4+1 (p times).
Hence p" = 0 = f(z) = —1. Now we see that f(z) and f’(z) have non
trivial common factor. By Lemma f(z) has no multiple roots. Hence
f(x) has distinct roots.

Definition 5.58 The extension K of a field F is called a simple extension
of Fif K = F(«) for some o € K.

Theorem 5.59 If F' is of characteristic zero and if a,b are algebraic over
F' then there exists an element ¢ € F(a,b) such that F(a,b) = F(c).

Proof: Given, F is of characteristic zero. Let f(z),g(z) be the irreducible
polynomial over F' of a and b respectively and let m,n be their respective
degrees. Let K be an extension of F' in which both f(x) and g(z) splits
completely (i.e.) K is the splitting field of f(z) and g(z) over F' then
a,b € K. Clearly, every root of f(z) is a root of f(x)g(x) and K contains
the splitting field of f(x). Since the characteristic of F' is zero all roots of
f(z) and g(x) are distinct (by Corollary [5.56). Let f(x) has m distinct roots
say a = aj,az, ..., ap, in K and g(x) has n distinct roots say b = by, bo, ..., by,
in K. If j # 1 then b; # by = b (i.e.) b—0b; # 0. We can solve the
equation a; + Abj = a1 + Aby = a + Ab has only one solution A in K namely,
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A= Zl_a € K. These \’s are finite numbers. As F' is of characteristic zero.

F has infinite number of elements. So we can find an element r € F such
that a; +rb; = a +rb Vi and Vj # (i.e.) 4,5 > 2. Let ¢ = a + vb € F(a,b).
Claim: F(c) = F(a,b). Since a,b € F(a,b), a + Vb € F(a,b) = ¢ €
Fla,b) = F(c) = F(a,b)... (1)

Let K = F(c). Since b is a root of g(z), (z — b) is a factor of g(z). Let
h(z) = f(c —rz). Then h(b) = 0 = b is a root of h(z) = (x — b) is
a factor of h(z). (i.e.) (z —b) is a common factor of h(x) and g(x). If
Jj# 1,h(bj) = f(c—1b;) # f(a) #0= f(c—rbj) #0 (i.e.) (x —b;) is not
a factor of h(z). Also (x — b)? does not divides g(z), (x — b)? cannot divide
the ged of h(z) and g(x). Thus, (x —b) is a ged of h(x) and g(z) over F' of
K. But then they have a non trivial gcd over K which must be divisor of
(x —b). Since deg(xz — b) = 1 we see that the ged of g(x) and h(z) in K[x]
is exactly © —b. Thus x — b € K[x]. Hence b € K = F(c¢) = b € F(c). Since
bce F(c)andr € F(¢) DF =c—rbe F(¢c)=a=c—rbe F(c)=a,be
F(c¢) = F(a,b) C F(c)..... (2)

From (1) and (2), = F(a,b) = F(c).

Corollary 5.60 Any finite extension of a field of characteristic zero is a
stmple extension.

Proof: Let ay,as,...,ap be algebraic over F' of characteristic zero. Then
by repeated use of the preceding theorem we have,

F(oq,ag,...,an) =

= F(’Vn—Q)a Qp
= F(’Yn—l)

F(aq,ag,...,ay) is a simple extension of F.
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