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Abstract

Many different types of fractional calculus have been proposed, which can be organised into
some general classes of operators. For a unified mathematical theory, results should be proved
in the most general possible setting. Two important classes of fractional-calculus operators
are the fractional integrals and derivatives with respect to functions (dating back to the 1970s)
and those with general analytic kernels (introduced in 2019). To cover both of these settings in
a single study, we can consider fractional integrals and derivatives with analytic kernels with
respect to functions, which have never been studied in detail before. Here we establish the
basic properties of these general operators, including series formulae, composition relations,
function spaces, and Laplace transforms. The tools of convergent series, from fractional
calculus with analytic kernels, and of operational calculus, from fractional calculus with
respect to functions, are essential ingredients in the analysis of the general class that covers
both.
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1 Introduction

Fractional calculus was introduced around the end of the seventeenth century, as a branch
of mathematical analysis that deals with the studies of various possibilities of defining real
number powers or complex number powers of the differentiation operator and the integration
operator. The expression “power” refers to iterative application of a linear operator to a
function: repeatedly composing the operator n times gives the nth power of the operator,
when 7 is an integer. Fractional calculus is the generalisation of classical calculus concerned
with operations of integration and differentiation of non-integer order.

Gottfried Wilhelm Leibniz, one of the inventors of calculus, established the notation
% f(x) for the nth derivative of a function f, for natural numbers n. In a letter of 1695,

Francois Antoine de L”Hopital wrote to Leibniz asking what would happen if n = %, and the
response of Leibniz to L’Hopital was as follows: “A paradox, from which it appears that one
day useful consequences will be drawn” . That was the birth of what we call fractional calculus,
which has attracted great mathematicians such as Euler, Liouville, Laplace, Riemann, and
many others (Miller and Ross 1993; Samko et al. 1993). Nowadays many scientists are
interested in the field due to its applications in engineering, physics, chemistry, biology,
economics, and so on. These applications arise because fractional calculus is very useful
for modelling different types of physical systems: often due to its nonlocality properties, as
opposed to classical derivatives which are local, and also the ability of fractional derivatives
to capture intermediate behaviours, such as viscoelastic substances which are intermediate
between solid and liquid (Baleanu et al. 2012; Hilfer 2008; Kilbas et al. 2006).

Aside from the applications of fractional calculus, many advances have also been made in
this field from the viewpoint of pure mathematics. Since the study of differential equations
is a major field of mathematics, many methods used for solving them have been investigated
and extended to a fractional context. Nowadays we have analytical solution methods (Kexue
and Jigen 2011; Luchko 1999; Restrepo et al. 2021), numerical solution methods (Brzeziniski
2018; Li and Chen 2018; Ozdemir and Yavuz 2017), qualitative properties of solutions (Djida
et al. 2019; Fernandez 2018; Restrepo and Suragan 2020), as well as several extensions of
the classical notion of fractional differential equations, such as stochastic (Ahmadova and
Mahmudov 2020), delay (Ahmadova and Mahmudov 2020), and variable-order (Sun et al.
2019) fractional differential equations.

There are many different ways of defining fractional operators, unlike in classical calculus
where there is only one way to define the derivative operation. The Riemann-Liouville frac-
tional calculus is the most commonly used definition, but it is limited by the fact that when used
for modelling physical problems, the initial value conditions are fractional, which seems not
to be appropriate for physical conditions. In this sense, the Caputo fractional derivative is more
preferable since then the initial condition required is in the classical form (Diethelm 2010).
Among other definitions of fractional calculus, we can mention Hilfer, Riesz, Hadamard,
Atangana—Baleanu, Prabhakar, tempered, and many others (Samko et al. 1993; Baleanu and
Fernandez 2019). These definitions are not equivalent to each other, but each one has its
own properties and its own applications, and all of them may be useful in different set-
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tings: for example, for modelling systems with power law behaviour, logarithmic behaviour,
exponential behaviour, and other more complex behaviours, or for different types of initial
conditions.

For applications, then, any one individual type of fractional calculus may be useful. But
from the mathematical point of view, it is not efficient to prove the same properties and
theorems over and over again for every fractional operator. Mathematicians seek to generalise,
to prove results just once in a general setting and then apply them for each operator as special
cases. Therefore, it is proposed to study broad general classes of operators instead of analysing
specific operators individually.

The class of fractional integrals and derivatives with respect to functions is an impor-
tant subtopic of fractional calculus, dating back to Erdelyi and Osler in the 1960s and
1970s (Almeida 2017; Erdelyi 1964; Osler 1970). The class of fractional integrals and deriva-
tives with analytic kernels is a newer innovation, proposed in 2019 (Baleanu and Fernandez
2019; Fernandez et al. 2019). Each of these two classes is broad enough to cover various
specific types of fractional calculus and capture diverse behaviours in fractional systems.
Combining both ideas yields a third, even more general, class: that of fractional integrals
and derivatives with analytic kernels with respect to functions. This covers both of the two
above-mentioned classes as subclasses; it was briefly defined in Fernandez et al. (2019), but
its properties have never been studied in the published literature so far. In this work, we
undertake the first formal study of fractional calculus with analytic kernels with respect to
functions.

The organisation of this paper is as follows. In Sect. 2, we review fractional calculus in the
following manner: first, the classical Riemann—Liouville and Caputo definitions, second, the
class of fractional calculus with respect to functions, and third, the class of fractional calculus
with analytic kernels. In Sect. 3, we consider fractional calculus with analytic kernels with
respect to functions and prove various new results concerning these generalised operators,
such as establishing series formulae and composition properties. In Sect. 4, we consider
functional analysis of these new operators, establishing appropriate function spaces in which
they can be applied. In Sect. 5, we show how some fractional integro-differential equations
using the new operators may be solved using a type of generalised Laplace transform. Finally,
in Sect. 6 we conclude the paper and look towards plans for future research.

2 Preliminaries

In this section, we provide the definitions and fundamental properties of the fractional integral
and derivative operators which will be used and referred to throughout the work. We shall
start by introducing the well-known operators of Riemann—Liouville and Caputo, on which
much of fractional calculus is based, and then continue by defining two firmly established
general classes mentioned above: fractional calculus with respect to functions, and fractional
calculus with general analytic kernels.

2.1 Riemann-Liouville and Caputo fractional calculus
In this subsection, we review the basic definitions of fractional calculus, in the classical models

of Riemann-Liouville and Caputo. For more detailed discussion, we refer to textbooks such
as Miller and Ross (1993), Samko et al. (1993), Kilbas et al. (2006) and Diethelm (2010).
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Definition 2.1 (Fractional integral) Let a € R be a constant, u € L'[a, b] a function, and
a € C such that Re(«w) > 0. Then, the Riemann-Liouville fractional integral of the function
u to order o with respect to x and with constant of integration a is defined as follows:

RL yu ._L/X _ ana—1
2 Lux) = r@ /., (x =) “u(r)dz.

Definition 2.2 (Riemann—Liouville fractional derivative) Let a € R be a constant, u €
C"[a, b] afunction, and o € C such that Re(«) > 0. Then, the Riemann—Liouville fractional
derivative with order « of the function u with respect to x and with constant of integration a
is given as follows:

RL d"
o Py—
a2 Diu(x) = e

where we note that n is chosen so thatn € N and Re(n —«) > 0, to give a classical derivative
and a fractional integral.

(Bereu), 0= (Re(@) +1,

Remark 2.3 By convention, we have
RL ~— RL
a Dxa”(x)=a Igu(x)’

so that the fractional operators f Lp% and 5 L1 are defined for all & € C. We use the word
“differintegral” for an operator which may be either a fractional derivative or a fractional
integral.

Remark 2.4 When the order of differintegration is a complex number, the difference between
fractional derivative and fractional integral is at the level of the sign of the real part. If
Re(a) = 0, pure imaginary order, then we have to use Definition 2.2 (fractional derivative)
only because Definition 2.1 (fractional integral) requires Re(«) > 0. This implies

Definition 2.5 (Caputo fractional derivative) Let a € R be a constant, u € C"[a,b] a
function, and @ € C such that Re(o) > 0. Then, the Caputo fractional derivative of the
function u with order o with respect to x with constant of integration a is defined as follows:

ngé‘u(x) = fLI;l_“ <%u(x)) , n:=|Re(x)] +1, Re(a) > 0.

In Caputo fractional calculus, fractional integrals are defined by the formula which gives the
Riemann-Liouville integral.

Following the above definitions, we state some results on the compositions of fractional
operators. The proofs of these results can be found in standard textbooks such as Samko et al.
(1993) and Kilbas et al. (2006).

Lemma 2.6 Riemann—Liouville fractional integrals are commutative and have a semigroup
property. That is,

RL RL RL RL RL
R (B 1fuo) = B1f (e ) = BE1e P,

forany a, B € C such that Re(er) > 0, Re(8) > O andanya € R, u € L'[a, b].
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Lemma 2.7 Standard (N-order) derivatives of Riemann—Liouville differintegrals have a
semigroup property. That is,

RL RL RL
Ry (BEDtuo) = KDt uc),
foranya € C,n € N, a € R, and sufficiently differentiable function u on [a, b].

Lemma 2.8 Riemann—Liouville fractional differintegrals of Riemann—Liouville fractional
integrals have a semigroup property. That is,

RL RL RL

a D)Oct (a Dfu(x)) =a D?+'B“(x)a
for any a, B € C such that Re(B8) < 0, any a € R and sufficiently differentiable function u
on |a, b].

2.2 Fractional calculus with respect to functions

Here, we review the fractional operators seen in the previous part but now with respect to
functions (Almeida 2017; Erdelyi 1964; Osler 1970; Fahad et al. 2021).

Definition 2.9 (Fractional integral with respect to function) Let a € R be a constant, u €
L'[a, b] afunction, & € C such that Re(a) > 0, and ¢ a monotonic C![a, b] function. Then,
the Riemann-Liouville fractional integral of the function u to order o with respect to the
function ¢ and with constant of integration a is defined by:

1 X
algux) = %/a @' Olpx) — o1 u(r)dt,

14
@'(x)  dx*

which is the fractional power of the operator of differentiation % =

Example 2.10 For ¢(x) = x, we recover the Riemann-Liouville fractional integral of order
o and with respect to x.
Example 2.11 For ¢(x) = log x, we have

1 x x\¥—1 u(t)
alipg u(x) = %/a (log ;) e dr = 1 u(),

the Hadamard fractional integral of order «.

Definition 2.12 (Riemann—Liouville fractional derivative with respect to function) Leta, b €
R be two constants such thata < b,and u, ¢ € C"[a, b] be two functions such that ¢’ (x) > 0
forall x € [a, b],and « € C be such that Re(«) > 0. Then, the Riemann—Liouville fractional
derivative with order « of the function u# with respect to the function ¢ and with constant of
integration a is given by:

1 d\”
RL nHa _ RL yn—«
P D‘p(x)u(x) = (7(,0/(10 . a) p I(p(x)u(x),
withn — 1 <Re(e) <n e Z™.

Example 2.13 For ¢(x) = x, we recover the Riemann—Liouville fractional derivative with
respect to x.
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Definition 2.14 (Caputo fractional derivative with respect to function) Leta, b € R be two
constants such that a < b, and u, ¢ € C"[a, b] be two functions such that ¢’(x) > 0 for
all x € [a, b], and @ € C be such that Re(«) > 0. Then, the Caputo fractional derivative of
the function u with order o with respect to the function ¢ with constant of integration a is
defined by:

1 d\"
c B _
o) =53 (5 aw) 0
withn — 1 <Re(e) <n e Z*.

Remark 2.15 As well as the extensions of Riemann-Liouville and Caputo fractional deriva-
tives to the corresponding operators taken with respect to a function, there is also a natural
extension of the Hilfer fractional derivative, defined similarly to the above. This has been
studied and further extended in a number of papers since 2018 (Sousa and Oliveira 2018;
Sousa et al. 2020).

Conjugation relation. The fractional operators with respect to functions can be written
as conjugations (in the group theory sense) of the original fractional operators with some
operators of composition. This allows many results on fractional operators with respect to
functions to be proved in a straightforward way, simply reducing the problem to one that has
been already solved for the original Riemann—Liouville and Caputo operators.

Let us define the composition operator Q, by Qy f = f o ¢, i.e.;:

(Qu f) ) = flpx)). 2.D

Note that the inverse operator is given by Q,, = Q,-1, for any monotonic function ¢. Then,
the following proposition gives us some conjugation relations.

Proposition 2.16 With all notation as in Definition 2.9, we have the following property:
RL RL ~1
a lowy = Qo © pls © Q-
With all notation as in Definition 2.12, we have the following property:
RL RL —1
a Doy = Qo 0p@Dio Q-
With all notation as in Definition 2.14, we have the following property:
c c -1
a Doy = Qo 0P o Q-

In view of the conjugation relations given by Proposition 2.16, the composition properties
of fractional integrals and derivatives with respect to functions follow immediately from
Lemmas 2.6, 2.7, 2.8 on the original Riemann—Liouville differintegrals.

Proposition 2.17 Fractional integrals with respect to a function are commutative and have
a semigroup property. That is,

RL RL B RL B (RL RL jo+p

a I;‘(x) (ﬂ Iw(X)“(x)) Ta I(/J(X) (ﬂ I(Z‘(X)u(x)) Ta Iw(x) u(x),

for any a, B € C such that Re(a) > 0, Re(8) > 0, and any a € R, u € L'[a, b], and any
monotonic C'[a, b function .
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Proposition 2.18 Standard (N-order) derivatives with respect to a function of Riemann—
Liowville differintegrals with respect to the same function have a semigroup property. That
is,

1 d\* RL RL :
<ma> (a Dg(x)u(x))=a D;(;;M(x)

foranya € C, n € N, a € R, sufficiently differentiable function u, and monotonic smooth
function ¢.

Proposition 2.19 Differintegrals of fractional integrals, with respect to functions and with
derivatives in the Riemann—Liouville sense, have a semigroup property. That is,

RL RL nB RL o+B
a Dg(x) (d Dw(x)u(x)):a D(p(x)u(x),

foranya, B € CsuchthatRe(B) < 0, any a € R, and any sufficiently differentiable function
u and monotonic smooth function ¢.

2.3 Fractional calculus with analytic kernels

Here, we review the fractional operators with general analytic kernels (Baleanu and Fernandez
2019; Fernandez et al. 2019).

Definition 2.20 (Fernandezetal.2019)Let[a, b]be arealinterval,«, 8 € C withRe(a) > 0,
Re(B) > 0, and R € R satisfying R > (b — a)R®) . Let A be a function analytic on the
complex disc D(0, R) and defined on this disc by the locally uniformly convergent power
series

Alx) = Zanx”, (2.2)
n=0

with the coefficients a, = a,(a, f) which can depend on « and B if desired. Then, the
generalised fractional integral of a function u € L'[a, b] with kernel A is given by:

AP u(x) = /x(x -0 A (= 0P u@) dr. (2.3)

Remark 2.21 If Ais an analytic function as defined by (2.2), we define a transformed function
Ar which will be very useful for our work as follows:

Ar(x) = Zanr‘(ﬁn +a) x".
n=0

Under the given assumptions that Re(«) > 0 and Re(8) > 0, the operators ;41 ,‘f # defined
in Definition 2.20 comprise a commutative family of bounded operators from L'[a, b] to
itself (Fernandez et al. 2019).

Proposition 2.22 (Series formula, Fernandez et al. 2019) With all notation as in Defini-
tion 2.20, the formula of ;141 V-84 as a locally uniformly convergent series is given by :

o0
A1Pu) =Y T (Bn + )R ISP u(x) = Ar (ijI;f) RLpwy oy, (2.4
n=0
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Proposition 2.23 (Semigroup property, Fernandez et al. 2019) We use all notation as in
Definition 2.20. For a semigroup property in one parameter, the equality

;41;’"5 o ;41;/’/3 u(x) = fngry’ﬂu(x)

is uniformly valid (i.e., for all o, B, v, u) if and only if the condition below is uniformly
satisfied for all positive integers k:

a@+y, AT Bk +a+y)= Y an(@, Ban(y, HT(Bn+ )T (Bm + ).
m+n=k

For a semigroup property in two parameters, the equality

8 +vy,B+6
AP o ALY u(x) = A1 PP ),

cannot be uniformly valid (i.e., for all a, B, y, 8, u).

Definition 2.24 (Generalised fractional derivative: Riemann—Liouville sense, Fernandez
et al. 2019) Let [a, b] be a real interval, o, 8 € C with Re(e) > 0, Re(8) > 0, and
R € RY satisfying R > (b — a)R®®). Let A be an analytic function as in Definition 2.20.
Then, the generalised fractional derivative in the Riemann-Liouville sense of a sufficiently
differentiable function u € L'[a, b] with kernel A is given by:

A d
TRDEPy(x) =

A7 n—ap _
— (a I, u(x)) , n—1<Re@ <neN, (2.5)

where the new analytic function A(x) = Y o2 a,x" is defined so that Ar - Ar = 1.

Definition 2.25 (Generalised fractional derivative: Caputo sense, Fernandez et al. 2019)
With all notation as in Definition 2.24, the generalised fractional derivative in the Caputo
sense of a sufficiently differentiable function u € L'[a, b] with kernel A is given by:

Ac . An—ap( 4
DY Pu(x) =20 f (wu(x)>, n—1<Re(a) <neN. (2.6)

3 Fractional calculus with analytic kernels with respect to functions

Having established the fundamentals of two major general classes of fractional-calculus
operators, we now turn our attention to the class resulting from the combination of these
two ideas. Our starting point will be the definition, presented briefly in Fernandez et al.
(2019), of the general fractional integrals with analytic kernels with respect to functions. In
Fernandez et al. (2019), this definition was presented towards the end of the paper and was
not elaborated on beyond some basic discussion. Here, therefore, we shall conduct a fuller
analysis and create, for the first time, a proper theory of these generalised operators.

3.1 Generalised fractional integrals with respect to functions

Definition 3.1 (Generalised fractional integral with respect to function, Fernandez et al.
2019) Let [a, b] be a real interval and «, B € C with Re(a) > 0, Re(B) > 0. Let A be an
analytic function as in Definition 2.20, and let ¢ € C 1 [a, b] be a monotonic function as in
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Definition 2.9. Then, the generalised fractional integral of the function u with respect to ¢ is
given by the following:

Sy iu(x) == f ¢'Ole(x) — o1 Alp) — ) lu@ydr. (3.1

a

(The appropriate function space for u is in fact L ;) [a, b], but this will be defined later, in Sect.
4 on function spaces and functional analysis of the considered operators.)

The formula (3.1) is the natural way of combining the formula (2.3) for fractional integrals
with general analytic kernels with the formalism of Sect. 2.2 for taking fractional-calculus
operators with respect to functions. As such, it generalises both classes of fractional calculus,
and also other operators which do not fall into either class, as we show in the following
examples.

Example 3.2 For ¢(x) = x, we recover the fractional integral with analytic kernel A as seen
in Sect. 2.3 above. Thus, the whole class of fractional calculus with general analytic kernels
falls within our new general class.

Example 3.3 For 8 = 0 and A(x) = ﬁ, we have

Aol u(x) = / @' (@) — ) —u() dr = M 1% u(),

INGY)
the Riemann-Liouville fractional integral of order @ with respect to the function ¢. Thus,
the whole class of fractional calculus with respect to functions, as defined in Sect. 2.2, falls
within our new general class.

e—.\'x

Example 3.4 For 8 = 1 and A(x) = e and ¢(x) = log x, we have

1 (1
Arel yx) = —/ —logx — log 1%~ emstogx—logn, 1) 4¢
[(a) Jo 1

a “o(x)
b M e XY (L) 1@
= F(a)/a (logt) (x) ; dr

= lggau ).
which is the Hadamard-type fractional integral of order « and parameter s. Note that
Hadamard-type fractional calculus does not fall within the class of operators with analytic
kernels, nor within the class of operators with respect to functions. But since it is the same
as tempered fractional calculus with respect to a logarithm function (Fahad et al. 2021), it
does fall within the generalised class which we are now studying.

Theorem 3.5 (Series formula) We consider all notation as in Definition 3.1. Then, the gen-
eral fractional integral f[g&f)u(x), with analytic kernel A and with respect to a Lipschitz

continuous function ¢, is given by a locally uniformly convergent series as follows:

o0
AP u) =Y a N (B + ) RIS u(x) (3.2)
n=0
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Proof Starting from the definition (3.1), we have
X
AT u) = / ¢ (@) — 90~ Alp(x) — (1) u(r) dt

= f @' (@) =) ™Y [an(px) — p)** ] u(t) dt

a n=0
= f ¢' (1)) an(px) — o)’ u(r) dr.
a n=0

Now, since the function ¢ is Lipschitz continuous on the analytic disc of radius R, then
with the condition ¢ < t < x < b, we have the above series which is locally uniformly
convergent, since 0 < |¢p(x) — <,o(t)|‘s < |x — t|5 < (b —a)R® < R and the series A
is locally uniformly continuous on D(0, R). Therefore, we can interchange the integral and
summation and obtain

flg(’j)”(x) = Z)/a an@ (1) (@(x) — @) ~u(r) dr

= ganF(cSn +v) [m /ax o' () (p(x) — go(t))‘s’lu(t) dt]
= anlGn+ )t ),
n=0

which ends the proof of the series formula. O
Theorem 3.6 (Commutativity) With all notation as in Definition 3.1, the set given by

{:141;‘(‘5) t o, B €C,Re() >0, Re(B) > 0]

is a commutative family of operators.

Proof Tt suffices to show that for all «, 8, y, § € C with positive real part, we have

Aqa.B Agv. Agv8  AqB
Lol 0 a Ly () = 20 0 L u(x), (3.3)

regardless of whether or not there is a semigroup property to yield operators with « 4 y and
B + §. Using Theorem 3.5, we have

o0 o0
, .8 + Sm+
AoB o T u) =Y a T (B + a)RE1N [Z anT(m + )10 Vu(x)i|

n=0 m=0

)
=" ay T(Bn+a) ay TOm+ )10 o REIUY u(x).

n,m

But we know from Proposition 2.17 that the fractional integral with respect to a function in
the Riemann—Liouville sense is commutative, therefore

RL yBn+a _ RL ydm+y __ RLydm+y _RLyBn+a
a I(/’(X) ®a Iw(x) u(x)_a I‘ﬂ(x) ®a Iw(x) u(x).
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It follows that

. 8 sm+ +
;‘1;‘(5) o MY ux) = am T@m +y) ay T(Bn+a) X107 o 5L1£&)au(x)

m,n
o0 o0
8
=Y anTGm+ )R {Z anT(Bn + a)ﬁLlf(’g“u(x)}
m=0 n=0

— .AIVJ; ° A[O"ﬂ

T aex) Ta w(X)”(x)'

Thus the required commutativity result holds. O
Theorem 3.7 (Semigroup property in one parameter) We consider all notation as in Defini-
tion 3.1. Then, the following equality:

.Alasﬁ ° .AIVnB

Al o My lue) = Al P uc) (34)

is uniformly valid (i.e., for all «, B, v, u) if and only if the condition below is satisfied for
any non-negative integer k:

ar(e@ +y, TBk+a+y)= Z an (e, Bam(y, PIT(Bn +a)T'(Bm +y).
m-+n=k

Proof Using the series formula from Theorem 3.5, and the semigroup property for Riemann—
Liouville fractional integrals with respect to a function from Proposition 2.17, we have:

o.¢] e¢]

s s + +

AP o AP u(x) = Y a T (Bn +a)REI5 [Z anT (Bm + ) REIE yu(x):|
n=0 m=0

=Y @y T(Bn+a) ap T(Bm + y)REIET o REIIT u(x)
n,m

=Y ay T(Bn+a) ap T(Bm + Y)RE Ay HAnEbm o

@(x)
n,m
— k
= [ > ananl (Bn+ o)l (Bm + y)} RV Pucx), (3.5)
k=0 Lm-+n=k

where in the last line we set k = m + n.
On the other hand, directly from Theorem 3.5 and replacing « by « + y, we have

o0
s k
M0 Pu) =3 akm Bk 4+ + ) RIS PR, (3.6)
k=0

Therefore, it can be seen that the right hand sides of (3.5) and (3.6) are uniformly equal if
and only if the following holds:

ai(oe+y, BT Bk +a+y) = Z an(a, Bam(y, BT (Bn +)I'(Bm +y).
m+n=k

forallk =0, 1, 2, .... This completes the proof. O
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Theorem 3.8 (Semigroup property in two parameters) We consider all notation as in Defini-
tion 3.1. Then, the following equality:

Aga.p Ay A yoa+y,f+38
oy 0 Iy ou () = 210 u(x) 3.7)

cannot be uniformly valid (i.e., for all «, B, v, 8, u).

Proof Using the series formula from Theorem 3.5, and the semigroup property for Riemann—
Liouville fractional integrals with respect to a function from Proposition 2.17, we have:

n=0 m=0

o0 o0
, N + Sm+
AoB o AT u) =Y a T (B + ) RE1N [Z anT(m + ) 150 Vu(x)j|

=Y " an T(Bn+ ) ap T(6m +y)RE15 0 REL0M 4 (x)
n,m

8
=" ay T(Bn+a) ay T@m + y)REL0 TP (x)

n,m

o0
= aarT(Bk + y)T 8k + p)RELE TPy 1)

@(x)
k=0
+ Y anD (B + )an T @m + RISy (3.8)
m#n

where we have split the sum into one part with (8 + §) times an integer in the fractional order
and another part with § and § times different integers.

On the other hand, directly from Theorem 3.5 and replacing o by & + y and g by 8 + 4,
we have

[o.¢]
’ k
AL = 3 (B + )k + o+ ) RESE TR, (3.9)
k=0

It follows that we have uniform equality between the right hand sides of (3.8) and (3.9) if
and only if the following two identities hold:

ap(ee, Bax (v, HT Bk + )T Sk +y) = ar(@ + B,y + HT((B+ Ok +a +y), keZf.
and
a, (o, BT (Bn + a)ay(y, )T (6m +y) =0, forall m,n € Zg‘, with m # n.

But, just like in Fernandez et al. (2019, Theorem 2.12), this latter condition cannot be uni-
formly valid since it implies .4 would be identically zero. O

Remark 3.9 Note that the results and derivations of Theorems 3.7 and 3.8 do not rely at all
on the function ¢: the same semigroup properties hold for any choice of ¢. This is because,
as we saw in Sect. 2.2 above, all composition properties for fractional calculus with respect
to functions are the same as the corresponding properties for the original fractional calculus.
Thanks to the conjugation relations of Proposition 2.16, we know that composition and
semigroup properties do not depend on the choice of ¢, only on the choice of A.
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Example 3.10 We illustrate the new generalised operators by demonstrating their application
to an example function, namely in this case a power of the monotonic function ¢:

oo
2140 (90") = S @l B + O FH 1L (p(0")
n=0

C(n+1)
Fn+a+pu+1)

pxyfrrecn

=) al(Bnta)-

n=0

= ()Y " a,B(Bn + o, 4 D[px)F]".
n=0

Example 3.11 As a further illustration of the new generalised operators, we demonstrate their
application to a Mittag-Leffler function of the monotonic function ¢:

Aol (Eu(so(x)“)) = X_(:)anl_‘(ﬂn +a)RL Pt (Eu(go(x)“))

= Zanr(ﬂ” +a)- ¢(x)ﬁn+aEu,ﬂn+ot+l(Qo(x)u)
n=0

IUPNPR R L(Bn +a) ke g
= p(x) ;;“’lrwkwwwn[‘”“w] [e()F]".

Depending on the choice of A giving the coefficients ay,, this function might be a bivariate
Mittag-Leffler function (Ozarslan and Kiirt 2019; Fernandez et al. 2020) of ¢(x).

3.2 Generalised fractional derivatives with respect to functions

In the paper Fernandez et al. (2019) where fractional calculus with general analytic kernels
was first theorised, the integral operator was defined first, and the derivative operators came
only after lengthy discussion about how exactly they should be defined to make the model
most natural and sensible. In the final section of that paper which introduced fractional
calculus with analytic kernels with respect to functions, only the fractional integral operator
was mentioned in this model. The corresponding fractional derivative operators, therefore,
are a new contribution of our current work, albeit a natural one given the fractional derivatives
with analytic kernels as defined in Fernandez et al. (2019) and the usual way of extending
fractional operators to be taken with respect to functions.

Definition 3.12 (Generalised fractional derivative with respect to function: Riemann—
Liouville sense) Let [a, b] be a real interval and «, 8 € C with Re(«) > 0, Re(8) > 0.
Let A be an analytic function as in Definition 2.20, and let ¢ € C"[a, b] be a monotonic
function as in Definition 2.12. Then, the generalised fractional derivative (in the Riemann—
Liouville sense) of a function u € L'[a, b] with sufficient differentiability properties with
respect to ¢ is given by the following:

Axped oy (L AN T meap ,
7 RDg(x)u(x) = <g0’(x) . dx) ; I;"(x)a u(x), with m —1 <Re(ax) <m €N,
(3.10)

where the new analytic function A is defined so that Ar - Ar = 1.
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Definition 3.13 (Generalised fractional derivative with respect to function: Caputo sense)
Let [a, b] be a real interval and «, 8 € C with Re(a) > 0, Re(8) > 0. Let .4 be an analytic
function as in Definition 2.20, and let ¢ € C"[a, b] be a monotonic function as in Definition
2.12. Then, the generalised fractional derivative in the Caputo sense of a functionu € L! la, b]
with sufficient differentiability properties with respect to ¢ is given by the following:

A o, _,4 m—ao, B 1 d\" .
CD(p(x)u(x) a o (go’(x) . a) u(x), with m —1 <Re(a) <m € N,
3.11)

where the new analytic function A is defined so that Ar - Ar = 1.

Theorem 3.14 (Series formula) With all notation as in Definition 3.12, the general fractional
derivative fR DZ’(f)u(x), with analytic kernel A and with respect to a Lipschitz continuous
function ¢, is given by a locally uniformly convergent series as follows:

o0
ADEE u(e) =Y @ (Bn—a +m)FE DY P u(x), m.neN, (3.12)
n=0

where as usual A(x) = Z;OZO anx" is defined so that Ar - Ar = 1, and A is assumed to be
analytic on the disc D(0, R) mentioned in Definition 2.20, and where m = |Re(«)] + 1 as
in Definition 3.12.

Proof Using the result of Theorem 3.5, we have

Aped (L AN A m-ap
Dwm”(x)—(m'a) a o U0

1
= < . d ) ZanF(,Bn —«a +m)RLI£&)a+mu(x)

@' (x)
_Zanr(ﬂn—a+m)< d > 5L (f&)a-"_mu(x)
= o' (x) “dx

o0
= @ (Bn—a+mE-Dl M),
n=0

where in the last step we used the composition property of Riemann-Liouville differinte-
grals with respect to functions given by Proposition 2.18. In order to justify exchanging the
order of differintegration and summation in the manipulation above, according to standard
theorems on termwise differintegration of series, we needed local uniform convergence of
both the pre-differentiation series and the post-differentiation series. The pre-differentiation
series of Riemann-Liouville integrals is locally uniformly convergent according to Theorem
3.5, and the post-differentiation series also consists only of Riemann-Liouville integrals for
sufficiently large n in the sum:

Z a,I'(Bn — o+ m)fLDa_ﬂnu(x)

@(x)
n=N
_ © C(Bn —a +m) LN
- nX::OaHN F(pn+ (BN —a)) PP+ (BN =gy u(x),
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where N is large enough that Re(BN — «) > 0 so that this series is a case of the one in
Theorem 3.5, a locally uniformly convergent series of Riemann—Liouville integrals, with
an extra multiplier consisting of a quotient of two gamma functions, which does not affect
convergence by Miller and Ross (1993, Theorem IV.1). Therefore, this series is also locally
uniformly convergent, and the proof is complete. O

Theorem 3.15 We consider all notation as in Definition 3.12. Then, we have the following
identities valid for allm € N and o € C with Re(a) > 0:

RL A B ym+a.p
I;Jn(X)( Iw(X)”(x)) alrp()é) u(x),

! d A ym+a,B cap
(90/()5) . dx) (“ I‘P(x) u(x)) = u1<p(x)”(x),

where the modified analytic functions B and C are given by

o0 o0

_ dp no__ l"(,Bn—i—(x) n
) _,;0 B +am ‘EO TBn+atm ™

Cx) =) (B + a)panx"

_il"(ﬂn—i—a—i—m) "
n=0 n=0

FrBn+a) 7

both of these series being locally uniformly convergent, just like the one for A, according to
Miller and Ross (1993, Theorem IV.1).

Proof Using the series formula of Theorem 3.5, and composition properties of fractional
operators with respect to functions (Propositions 2.17, 2.18), we have the folloing:

RLI’”(X) (Zanr(ﬂn +(x)RLIﬂ(';'au(x)>

n=0

RL
a oo (a g,,(x)u(x))

o0
> a, T (B +a)RE1m  REEI (x)

px)a “ex)

n=0

o
=T (Bn+ ) RELE " u(x)

n=0

I'Bn + o) RL yBn-+a+m

= r 1

Z[ “TBn+a+m) (Br ot m)g - u)

B o p
=y 00,
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and

1 d A ym+a,p
(w/(x) ' dx) gl

1 d\" o
((/J/(x) a) (ZanF(ﬂn +a+m)RLI£(;)r " u(x))

nr(ﬂn+a)( : ~d) AT

e

= @'(x) dx

- Z F(Bn+a +m)RE 100 u(x)

[ TBn+a+m) RL ,Bnta
Z[an et ) ]F(ﬂ o)y Ly u(x)
=a w(x)”(")

where in each case we exchange the order of differintegral and sum since the relevant series
are convergent. ]

Theorem 3.16 We consider all notation as in Definition 3.12 and «, B, y € C with positive
real part and Re(y) < Re(w). Then, the following composition relation:

AnwB  AyB A pa—y.B
a Dyixy 0 a Loy () = 3" Dy " u(x)

is valid if and only if we have the following equality for all k € Zg:
ak(le —y, AT (Bk —a+y +m) = Z an(a, Blap(y, U (Bn —a +m)I'(Bp +y),
n+p=k

where m = |Re(a)| + 1 as in Definition 2.20.

Proof Using the series formulae for AD o(x) and f[g(f (Theorem 3.5, Theorem 3.14), as
well as the semigroup property for fractlonal calculus with respect to functions (specifically
Proposition 2.19), we have the following:

o0
ApaB Agv.B — RL na—B Aqv.B
DR o M B ux) = |:Zanl"(ﬂn —a+m)k Dg(x)”} A STIEN
n=0
= i C(Bn —a+mf Dy o i PBp+ PRI u)
ap n o m o (x) Llp P Y o(x) ux 5
n=0 p=0
=Y @, T(Bn —a +mTBp + )FEDL " o REEPT u(x),
n,p
= aua, T (Bn—a+m)U(Bp +)REDII" PP u(x),
n,p
=Y G, T (Bn —a +m)T(Bp + y)FEDI T PPy (x),
n.p

e}
=2 D @apTBn—a+mTBp+ s Dy uw |,
k=0 | n+p=k
(3.13)
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where the coefficients @, and a, are dependent on parameters as a, (o, 8) and a,(y, B).
Meanwhile the series formula in Theorem 3.14 yields

oo
-y, — —y—pk
ADS T Pue) =Y @k —a +y +mEpi P (3.14)
k=0
where the coefficients a; are dependent on parameters as ax(a — y, ).
Therefore, the right-hand sides of (3.13) and (3.14) are equal if and only if

A —y, AT Bk —a+y +m)= Y ay(a, Bay(y, HT(Bn —a+mT(Bp +7v)
n+p=k

holds for all values of k. O

4 Functional analysis of the new generalised fractional calculus

In the above discussion, several new operators have been defined and their properties have
been analysed; however, no mention has been made of the function spaces on which these
operators act. It is important to know which types of functions can have such operators applied
to them, in order that we can know how wide-ranging the new theory actually is. It turns out
that the appropriate spaces to consider are weighted L spaces, since ¢’ (x) dx is equivalent
to a new measure dg(x).

4.1 Function spaces for the generalised fractional integral operator

In this subsection, we establish an appropriate function space for the generalised fractional
A
a Ifﬂ(x)
[1, 00) this operator is bounded in the weighted L” space Lb[a, b], which we define as
follows. This will justify the remark made during Definition 3.1 about the weighted L'

function space for this operator.

integral operator with respect to a function. Specifically, we prove that for any p €

Definition 4.1 Let | < p < oo. The space Lg[a, b] is defined to consist of all Lebesgue
measurable functions u : [a, b] — C for which |Ju]| L < 00, where the norm is defined by

1
b ?
ety = ([ oo o) @)

This is precisely the weighted L7 space given by using the measure dg instead of the Lebesgue
measure, namely the space L?([a, b], dp. Indeed, weighted L? spaces are an appropriate
setting even for the original fractional integrals with respect to functions defined in Sect. 2.2,
as is being discussed in some further upcoming research.

If we consider ¢(x) = x, then the space Lg [a, D] coincides with the space L?[a, b] with
the usual norm

1
b v
lull, = (/ Iu(x)l”dx) forl < p < oo.

In the theorem below, we prove that, for a non-negative increasing function ¢, the gen-
eralised fractional integral operator of any real-part-positive order o with respect to ¢ is
well-defined on the weighted space LZ [a, b].
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Theorem 4.2 With all notation as in Definition 3.1 and 4.1, we have a well-defined bounded

operator ;l‘tlg(’ﬁ) from the space Lz [a, b] to itself, with
Aqo.p
]y = Ky, 4.2)

where the constant K is defined by
_ o) — p@)°

o

K sup |A(T)]. 4.3)

ITl<(p(b)—p(a))?

Proof Using the definition of ;141 *F and Eq. (4.1), we find

@(x)
b
=

Making the substitution (1) = @(x) — ¢(¢) in the inner integral, which gives ¢’(t) dt =
—¢' (1) dt, we get

1
p »
flgﬁf)” @' (x) dx) .

/ ' Olpx) — M1 Al(@(x) — ()P Tu(r) dt

a

A B
a Ly

= (fab §0,(X)jx) l
:(/ab dx)p.

1
Since u(x) € Lf;[a, b], it follows that ¢’ (x)? u(x) € L?(a, b), and hence by application of
the generalised Minkowski inequality, we have

P
L'ﬂ

1
4 »

¢~ e —p(@) | |
fo ¢ e Alp() I (7! () — (1)) dr

¢ @—g@) X 1 .
/0 ¢ e Al @l ) 7u (07 (o) = 9(2) de

1

—1 1

¢l @b)—p@) [ b , .
= / u (7 o) —o@n)|" ¢/ o dx
Lo o L @) +e(@)

x ¢ (D) Alp(r)P1dr

Aap
a Ly

e e —0@) [ re e®—p(1)) / o » ,
2/0 / lu@®I” ") dr ] @' (De@)*  Alp(r)P]dr.
a

Because A is analytic on D(0, R) by definition, the function A[¢()?] is bounded on the
finite interval [0, go_l (¢(b) — @(a))]. Moreover, since u is in the space Lg [a, b], we get

A .
a I(p(x)u Lg =< K”“”LQa
where
o @) —p(a)) |
Ki=  swp  |A®| f ¢ (g dr
[tl<(p(b)—p(a)? 0
(p(b) — @(a))*
= sup [A(T)],
o ltl<(p(b)—p(@)f

and this completes the proof. O
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4.2 Function spaces for the generalised fractional derivative operator

In this subsection, we establish an appropriate function space for the generalised fractional
derivative operator 7, with respect to a function. In order to do this, we must use the
following function space Cq ¢la, D], a weighted version of the function space C, which is
often used in operational calculus (Luchko 1999; Hanna et al. 2020; Tomovski et al. 2010).

Definition 4.3 Let [a, b] (0 < a < b < o) be a finite interval on the half-axis Rt. Then,
the weighted space C, ,[a, b] of functions u on (a, b] is defined by

Copla,bl={u:(a,b] > R : [p(x)—¢@]"u(x) € Cla, bl},

with the norm
lulc,, = max [p(x) — p(@)]*u(x)|. 4.4

Moreover, the weighted space C ;” w[a, b] of functions u on (a, b] is defined by

Cla,bl={u:(a.bl >R : ux)eC" '[a,b], u™ (x) € Cayla, b},

with the norm

,
Ca,p

m—1
Iz, = 32 [u ]+ [«
k=0

where || - ||so is the usual supremum norm on Cla, b]. These spaces are similar to those
introduced by Fahad and Fernandez (2021a,b).

Theorem 4.4 With all notation as in Definition 3.12 and 4.3 and with A assumed to be
analytic On the disc D(0, R) mentioned in Definition 2.20, we have a well-defined bounded

operator ®D%P on the space C&’f(p[a, b] and

@(x)
Dy . ., < Miulcg,. 4.5)
where the constant M is defined by
R 4.6)
moe Itl<(pB) g (@)

Proof Using the definition of Ar Dz(f) and Eq. (4.4), we obtain

1 d\" 7, m-
oty 2
Cap ¢'(x) dx Cay

1d m—a,
] [go(x)—go(a)]“( -—) AP u )

@B
o)

= max

xela,b ¢'(x) dx
. o 1 d\"
= max [lp(x) —p@] (@,m-a>

X / @' (Dlp(x) — O Al(p(x) — )P lu(r) di

] / o' Olpx) — oM™ Al(p(x) — @(1))P1dr].

@ Springer f DMAC

< (\u m max
< llulcm, max



244 Page 20 of 24 C.M.S.Oumarou et al.

Making the substitution ¢(t) = ¢(x) — ¢(¢) in the above integral, which gives ¢’(7) dt =
—¢/(t) dt, we get

4 ) —¢(@) |
RDwm”H = lullc, ma h]}/ ¢ ()" Alp(x) 1dr|.

Because A is analytic on the disc D(0, R), the function X[(p(r)ﬂ] is bounded on the finite
interval [0, ! (¢(x) — @(a))]. Thus, we get

A
Aepsfull < My, .
(2
where
o ¢~ (p(x)—p(a)
M= max sup A ‘ / o' (D)t dr
relabl o) < (p(x)—p(a))? 0
(p(b) — p(a)™ ™
= sup
m-—a I7l<(p(b)—p (@)’
and this completes the proof. O

5 Generalised Laplace transform and fractional differential equations

Transform methods, including Laplace, Fourier, and other related transforms, are a tried and
tested way of solving differential equations, both ordinary and partial, and also fractional ones.
In the setting of fractional operators with respect to a function ¢, we need a generalisation
of the Laplace transform which is appropriate for handling those operators.

In this section, we first recall the definitions of generalised Laplace transform and ¢-
exponential order which we shall refer to throughout the section. We find the generalised
Laplace transforms of the generalised fractional integral and derivative of a function with
respect to another function and then make use of these results to solve some differintegral
equations in the settings of the generalised operators.

Definition 5.1 (Jarad and Abdeljawad 2020; Fahad et al. 2021) Let u : [0,00) — R be a
real-valued function and ¢ be a non-negative increasing C' function such that ¢(0) = 0.
Then the Laplace transform of u with respect to ¢ is defined by

Ly fux)} = i(s) = / T e g (o) di, (5.1)
0

for all s € C such that this integral converges. Here £, denotes the Laplace transform with
respect to ¢, which we call a generalised Laplace transform.

Definition 5.2 (Jarad and Abdeljawad 2020; Fahad et al. 2021) A function u : [0, c0) — R
is said to be of p-exponential order ¢ > 0 if there exist positive constants M and X such that
forall x > X,

lu(x)| < Me™,
1e., if

u(x) = 0™y  as x — oo.
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The significance of this definition is that, if u# is of ¢-exponential order c, then its Laplace
transform with respect to ¢, the function L, {u(x)} = #(s), is well-defined for all s € C
with Re(s) > c.

Theorem 5.3 With all notation as in Definition 3.1, and assuming that the function u is of
p-exponential order, piecewise continuous over each finite interval [0, T'], with generalised
Laplace transform u, the function élg&f)u(x) has a generalised Laplace transform given by
the following formula:

—

fa B uts) = s~ Ar(sTPyacs). (5.2)

Proof Using the series formula (3.2) along with the generalised Laplace transform of the
fractional integral of a function with respect to another function (Jarad and Abdeljawad
2020; Fahad et al. 2021), we get

Al;j‘(f)u(s) ZanF(ﬂn—i—a)RLlf(';_a ()
n=0

=Y al(Bn +a)s P i(s)

n=0

=5 “u(s) Zanl"(ﬂn +a)s P,

n=0

as required. O

Theorem 5.4 With all notation as in Definition 3.12, and assuming that the function u is such

thatu(x), LI;"(X)“ u(x), (1)“ D(})(x)gLI;"(x)“u(x), ... RLDzl(x)ngg(x)“u(x) are continuous on

(0, 00) and of <p exponential order, while ¥ 0
Sfunction ApY

g(x) u(x) is piecewise continuous on [0, 00), the
(p(x)u(x) has a generalised Laplace transform given by the following formula:

o
ADZ(f)u(S) =Y a0 (Bn —a +m)s* Pri(s)
n=0

[Rea/Re B [Ny

— Y Y @rBn—atmyst (5%%;”“‘“*%) 0),

n=0 i=0
where N, € Z is defined as N, = |Re(a — Bn)] for all n such that this quantity is non-
negative.
Proof Using the series formula (3.12) along with the generalised Laplace transform of the
fractional derivative of a function with respect to another function, we obtain

ADg(f)u(s) Za"r(ﬂn —o+ m)RLDZ(x/)gnu(s),
n=0

where

- [Rey)
A R 1
REDY u(s) = Vi) — Y Ry (FLIIREITT ) 0, Rer) > 0.
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This gives the required result, noting that there are only finitely many values of n > 0 such

that Re(o — Bn) > 0, namely all the values of n < Ezggg , so the eventual resulting sum is

finite. O

Remark 5.5 The assumptions on u in the above Theorem are not all independent from each
other. Indeed, if a function u is ¢-exponentially bounded, then so is its fractional integral
to any positive (or positive-real-part) order. Therefore, in Theorem 5.4, it is sufficient to
assume that u(x), and also ) RLpk RLpm=a, oy for sufficiently large k < m so that this is

) N P(x)0 “o(x) k
a fractional derivative rather than a fractional integral, are exponentially bounded.

Theorem 5.6 With all notation as in Definition 3.1, and assuming that the function v is
piecewise continuous and is of @-exponential order, the following fractional integral has a
unique solution u:

0+ ¢(x)“(X) +cu(x) =v(x), u) = U(CO) ceR. (5.3)

Proof Applying the generalised Laplace transform to Eq. (5.3) and using the result of The-
orem 5.3, we get

0(s) = 0+Ig(f)u(s) + cu(s)
=5 YAr(sP)a(s) + ci(s).
So we have an explicit expression for the generalised Laplace transform of u, namely
0(s)
STYAr(sTPY 4+ ¢

This has a unique inverse generalised Laplace transform, giving a unique solution function
u. ]

us) =

6 Applications and conclusions

The main goal of this paper was to study the general class of fractional operators with
analytic kernels with respect to functions, in particular using convergent infinite series and
an operational calculus formulation. We achieved the main purpose, establishing various
properties of these operators, such as establishing appropriate composition properties and
function spaces, by considering each problem using the same methods as used in one of the
smaller pre-existing classes of fractional operators. To achieve these goals, several concepts
from fractional calculus and its generalisations needed to be pieced together. Key roles were
played by the concept of series formulae, which comes from the theory of fractional calculus
with analytic kernels, and by the concept of conjugation of operators, which comes from the
theory of fractional calculus with respect to functions.

As we draw to the end of this work, it is time to consider not only the achievements
made so far, but also finding open doors to several directions of further research that could
be pursued in both the short term and long term. Mathematically, more work could be done
on the function spaces appropriate for these operators and on their relationships with other
fractional operators. The current work contains some basic results on fractional differential
equations using the new generalised operators, but these could be extended in the future to
more advanced techniques for fractional differential equations which might find some value
in applications.
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As always, general mathematical formulations are valuable largely because they can be
applied to a broader range of different real-world problems. It is known that several operators
defined using convolutions with analytic kernels have discovered applications in effective
modelling, such as the Atangana—Baleanu operators displaying Mittag-Leffler behaviour (Bas
et al. 2019; Jajarmi et al. 2019). Fractional derivatives with respect to functions have also
discovered applications, such as the Hadamard operators displaying logarithmic behaviour
which appear in probabilistic modelling of certain statistical distributions (Garra et al. 2018),
and fractional derivatives with respect to exponential functions used to effectively extend the
Dodson diffusion equation (Garra et al. 2018). The general formalism introduced in this paper
covers all such operators under a single umbrella, and also others such as Hadamard-type
operators (see Example 3.4 above) which were not covered by either of the previous classes,
but which nevertheless have applications, e.g. in kinetics (Ma 2020). Therefore, any results
proved in this general setting can immediately be applied to a huge range of problems,
anything involving any operator with an analytic kernel or with respect to a monotonic
function or any combination of the above.

The main point of this work was to demonstrate the ultimate generality to which such
operators of fractional calculus can be taken: combining two already very general classes of
operators to obtain a new, even more general, class. Even if this class in its full generality is
not applicable to solve many real-world problems directly, its advantage lies in the fact that
it is broad and general enough to cover a huge number of types of fractional calculus, from
Prabhakar to Erdelyi to Hadamard-type, which all have different properties and behaviours,
but which can all be covered by the general formulae introduced here.
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