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1. Introduction

Let @ C R" withn > 1be an unbounded connected open set with boundary I" at least of class C? uni-
formly. Let w, 01 and O, be three nonempty subsets of Q such that O; N w = @. For the time T > 0, we
set Q= (0,T) x 2, wl =(0,T) x w, OF = (0,T) x Oy, OF = (0,T) x O and £ = (0, T) x T.
We consider the following nonlinear heat equation:

0 .

8_); —Ay+f(y) =kl, +vilp, +v2lp, inQ,

y=0 on X, (1)
$(0,.) = y° in Q,

where y° € L?(R) and the controls k, v; and v, belong to L? (D), LZ(OIT) and L2 (OZT ), respectively.
The function 1x denotes the characteristic function of the set X. We assume that the function f :
R — R satisfies the following assumptions:

3K > 0: [f(u) —f(u2)| < Klug — uz|, VYupu €RR,
f(0) =0, (2)
feC'(R).

The first assumption of (2) means that f is a globally Lipschitz function. We also assume that the
unbounded sets €2 and w are such that

Q\ w isbounded. (3)
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Ify° € 12(Q),k € I? (wh),vi € Lz(OiT), i = 1,2 and f satisfies (2), then, we prove that the system (1)
admits a unique solution

y = y(k,v1,v2) € L*((0, T); HY (2)) N C([0, T]; L*(2)).

Let O14, O34 C Q be two open subsets, representing the observation domains. We define the
following functionals:

. o 2 N; 2 .
]i(k) V1, VZ) - 5”)/(]() V1, VZ) - Z"’d”Lz((O,T)XOi,d) + ?Hvian(OiT)) i=12, (4)

where «; and N; are positive constants and z; 4 € L*((0, T) x O, 4), i = 1, 2 are desired states.

In this paper, we analyze the null controllability of system (1) following hierarchic control tech-
nique. More precisely, we apply the Stackelberg—Nash method, which combines the optimization
technique of Stackelberg and noncooperative optimization technique of Nash. In order to explain
the methodology, we consider the two following problems:

Problem 1.1: Let w, O; and O, be three nonempty subsets of Q. Given k € L2 (0T) and W e LX(Q),
find the controls ¥; := V1 (k) € L? (OIT) and ¥ := "y (k) € L? ((92T ) such that

Ji(ksv1,72) = min _ Ji(k;vi, 1), (5)
v el2(O])
and
L1, 92) = min ok V1, v2), (6)
v el2(0h)

where the functionals J; and J, are defined by (4).

Problem 1.2: Let w, O; and O, be three nonempty unbounded subsets of €2 such that O; N w = @.
Assume that (3) holds true. Let also (v1, v,) be the solution obtained for Problem 1.1. Given yo €
L*(R), find a control k € L?(w) such that if j = y(t, x; k, 91 (k), 92 (k)) is solution of (1), then

T, x) = y(T, x; k, 91 (k), ¥2(k)) = 0, forx e Q. (7)

The motivation of the hierarchic control comes for example from environmental problem. The
system (1) can be used to describe the diffusion of a pollutant (e.g. the chemical product) named y in
a river Q2. Our goal here is to bring the concentration of this pollutant to zero at the final time T'> 0
with appropriate control denoted k, trying meanwhile to keep the concentration of this pollutant to
a desired state in O; 4 along the interval (0, T') with another controls named v;.

Remark 1.1: (1) Note that (5)-(6) are equivalent to
Nk, 92) < Ji(ksvi,92), Yy € L2(OD),
Lok 71, 92) < (ks 91, v2), Y vy € L2(OF).

(2) Any pair (¥, ¥,) satisfying (5)-(6) is called a Nash equilibrium for J;, i = 1,2 given by (4) and
associated to k.

(3) Ifthe functionals J;, i = 1,2 are convex, then (¥1, ¥;) is a Nash equilibrium for J;, i = 1,2 ifand
only if

0
%(k;al,m(vl,m:o, Vi e 200, # e 1207 (8)
V1

and

o . . .
a—é(k; DL 92)(0,v2) =0, Vv e 2O, ¥ e 12(OD). 9)
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Problem 1.1 and Problem 1.2 constitute a hierarchic control strategy for model (1). The Stackelberg
leadership model is a multiple-objective optimization approach initiated by H. von Stackelberg in
[1]. This model is a strategic game in Economics in which two firms compete on the market with
the same product. The first to act must integrate the reaction of the other company in the choices it
makes in the amount of product that it decides to put on the market. There are some literature on
the Stackelberg strategy in the framework of partial differential equations. In [2], J. L. Lions used the
Stackelberg strategy for a linear parabolic equation with two controls named follower and leader. The
follower aimed to bring the state of the system not too far from a desired state, while the leader has
to steer the state at final time to a small neighborhood of a given state. Several other papers, see for
instance [3-8], applied the Stackelberg control strategy to solve a wide variety of problems. Recently,
in [9,10], the authors used the Stackelberg strategy to solve problems with incomplete or missing
data.

There are also in the literature some results about Stackelberg—Nash strategy for partial differen-
tial equations (PDEs). J. I. Diaz and J. L. Lions in [11,12] studied the Stackelberg—Nash strategies
for the approximate controllability of some parabolic equations with one leader and N followers. In
[13], E. Guillén-Gonzalez et al. studied the approximate controllability of Stackelberg—Nash strategy
for Stokes equations with three controls. In [14], E D Araruna et al. developed the first hierarchical
results within the exact controllability framework for a linear and semi-linear parabolic equations.
This strategy involved three controls: one leader and two followers. Each follower was supposed to
bring the state of the system to a desired state while the leader solved an exact controllability prob-
lem. This previous work motivated some authors and a lot of other results appeared, see for instance,
[15-20] to solve a variety of systems. Note that the above works on hierarchic control for partial
differential equations were considered in bounded domains. In [21], the authors proved the Stack-
elberg strategy in the sense of null controllability for a linear parabolic equation in an unbounded
domain. As far as we know, Stackelberg-Nash strategy has not yet been considered in an unbounded
domain in the sense of null controllability. However in [22], I. P. de Jesus et al. established Stackel-
berg-Nash strategy for the linear heat equation in an unbounded domain € = R". They spent the
case of approximate Stackelberg-Nash controllability.

In this paper we are concerned with Stackelberg-Nash null controllability problem in an
unbounded domain involving three controls: two followers and one leader. The first problem is a
Nash equilibrium which is a noncooperative optimization approach introduced in [23] by J. E Nash.
Assuming that the leader has made his choice of policy, the objective of each follower in Problem 1.1
is to move the state of the system not too far to his desired state. The leader solves a null controllability
problem in an unbounded domain.

Null controllability problem of parabolic equations in unbounded domains has been studied
by some authors. The first positive result was obtained by S. B. De Menezes et al. in [24]. The
authors showed the null controllability of a semilinear heat equation in an unbounded domain
with nonlinearities of the form f(y), the real function f being of class C! and globally Lipschitz.
The results were achieved by means of a fixed-point theorem and under the assumption that the
uncontrolled domain is bounded. In [25], V. R. Cabanillas et al. extended the previous result for
a nonlinear parabolic equation with the nonlinearities of the form f(y, Vy). Under the assumption
that the uncontrolled region is bounded, M. G. Burgos et. al. [26] proved the null controllability of
a semi-linear heat equation with the nonlinearities of the form f(y, Vy) which grows slower than
lyllog*2(1 + y] + |Vy]) + |Vyllog/2(1 + |y| + |Vy]) at infinity.

Following the ideas of the above papers on the null controllability problem in unbounded domains,
we study the Stackelberg-Nash null controllability of a nonlinear heat equation in an unbounded
domain. Using the fact that the control which bring the system to rest at final time acts on an
open unbounded set such that the uncontrolled domain is bounded, we prove using appropriate
Carleman inequalities and fixed-point theorem that the system (1) is Stackelberg-Nash null con-
trollable. The novelty of this paper is that, we extend Stackelberg—Nash strategy to an unbounded
domain.



4 L. L. DJOMEGNE NJOUKOUE

1.1. Main results

To state the main contributions of this paper, we will have to impose the following assumptions:

(10)

01,4 = O, 4 : the common observability set will be denoted by Oy,
OgNw # 0.

If f(y) = ay and we assume that a € L°°(Q), then the system (1) is linear and we have the following
result.

Theorem 1.1: Suppose that (10) holds and that N;, i = 1,2 are large enough. Then, there exist two
positive real weight functions 0 = 6(t) and w = w (¢, x) (the definition of 0 and w will be given later)
such that for any z; 4 € L*(OY) satisfying

T
/‘/OJW#M&<+m,i=LL (11)
0 Oy

and for any y° € L*(RQ), there exists a unique control h € L2(w") and the corresponding Nash equilib-
rium (1, v2) such that the solution of (1) satisfies (7). Moreover

h=p inor, (12)
where p satisfies
9p O - - .
__t—Ap—‘rapz (a1\111+a2\112) 1(9,1 in Q, (13)
o=0 on X,

and U;, i = 1,2 are solutions of

A AY; + ad L s1o, inQ

—_— = i+a¥, = ——pilp. inQ,

Aat i i Nipl O, (14)

W, =0 on %,

U;(0,) =0 in Q.

In addition, there exists a constant C = C(||al|(q), T> 70, T1, do) > 0 such that
2
hll2ry < C (Z ~Zid + ||y°||Lz(m> : (15)

i=1 12(0})

In the semi-linear case, we do not have the convexity of the functionals J;, i = 1,2 in general and
this motivates the following weaker definition.

Definition 1.1: Let k be given. The pair (¥;, ¥,) is called a Nash quasi-equilibrium for the functionals
Ji, i = 1,2 associated to k if the conditions (8) and (9) are satisfied.

The following result holds in the semi-linear case.

Theorem 1.2: Suppose that (2), (3) and (10) hold and f € WH*°(R). Then, there exist two positive
real weight functions 0 = 0(t) and @ = @ (t,x) such that if (11) holds, for any y° € L*(), there
exists a control k € L2 (wT) and associated Nash quasi-equilibrium (1, ¥2) such that the solution of (1)
satisfies (7).
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In the semi-linear case, there are some situations where the concepts of Nash equilibrium and Nash
quasi-equilibrium are equivalents. An answer is given by the following result:

Proposition 1.1: Assume thatf € W>®(R) andz; 4 € L™ (Og)fori = 1, 2. Suppose that y° € L*(Q)
and N < 12. Then, there exists a positive constant C independent of N, i = 1,2 such that, ifk € L3 (w])
and the Nj are large enough, the pair (V1, v,) is a Nash equilibrium for J;, i = 1,2 of (1).

Remark 1.2: e In this paper, we assume that O; N @ = @. This means that the domain of followers
control and the leader control are disjoints. Note that, in a realistic situation, the leader control
cannot decide what to do at the points in the domain of followers. Indeed, if O; N w # ¥, once the
leader has chosen it strategy, the followers can modify the leader’s strategy at those points.

e The assumption (3) is very important. Indeed, the main difficulty with unbounded domains is that
we lose the compactness of the Sobolev embedding. So to overcome this difficulty, we will need
this hypothesis and then the nonlinear system is reduced to the case where the nonlinearity is now
supported in a bounded domain.

e The first assumption in (10) will be used in Section 2.2 to obtain the observability inequality of
Carleman type very important tool to solve controllability problem.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.1 correspond-
ing to the Stackelberg-Nash null controllability for a linear auxiliary system. In Section 3, we prove
Theorem 1.2 by using a fixed point argument. A conclusion is given in Section 4.

2. Thelinear case

The purpose of this section is to prove Theorem 1.1. We will do this in the next three subsections.
Now, we are concerned with the Stackelberg-Nash null controllability for the following linear system

0

B_Jt/ — Ay+ay =hl, +vilp, + nlp, inQ,

y=0 on X, (16)
$(0,.) = y° in 2,

where h € L2 (@), v; € L2(OT), v, € L2(OF) and y° € L*(Q). This means that we want to solve
Problem 1.1 and Problem 1.2 for system (16).

We assume in this section that the potential a = a(t, x) is in L>°(Q). From now on, || - [loc will
denote the norm in L°>°(Q) and we will write C(X) to denote a positive constant whose value varies
from a line to line but depends on X.

Under the assumptions on the data, system (16) has a unique solution y(t, x) := y(h, v1,v2) =
y(t, x;h,v1,v2) € L2((0, T); Hé (R)) N C([0, T]; L*(K2)). Moreover, we have that there exists a positive
constant C = C(||a||o, T) such that

2 2 02 2
||)’(T) )”LZ(Q) + ”y”LZ((O,T))Hé(Q)) = C (”}’ ”LZ(Q) + ”h”LZ(wT))
+ ¢ (In 22 op, + 12l o)) (17)

Actually,

Clllalloo, T) = e*@lalloet VT, (18)
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2.1. Problem 1.1 for system (16)
Let H be the Hilbert space defined by:
H =12(OF) x 12(0)), (19)
with the scalar product:
(or@omn= [ fodxdts [ oo dsds forall Gon@aren Qo
1 2

We are interested in Problem 1.1 for the linear system (16), that is, for any h € L?(w”), find the
controls ¥ := V1 (h) € L? (OlT) and ¥, 1= " (h) € L? (OZT) such that

Ji(h; v1,%2) = min _ Ji(h; vy, 92) (21)
vel2(0)
and
]Z(h) ‘A}l) i\/2) = min ]2(h> i\/l)‘VZ)» (22)
v el2(0F)
where fori = 1, 2,
o N;
]l(h) Vl’ VZ) = 71”)’(”1, Vl) VZ) - Zi’d”]2~2((0,T)><O,‘)d) + 7’”‘%“%2(07)’ (23)

with a;, N; > 0, z;4 € L>((0, T) x O;4)), i = 1, 2 and y(h, v1,v,) being the solution of the linear
system (16).

Since the system (16) is linear, then the functionals J;, i = 1, 2 given by (23) are convex. Then using
Remark 1.1, we have that (¥, 9,) is solution of (21)-(22) if and only if

M . . . .
8—V11<h;vl,vz)<vl,o>=o, Vv e 2O, ¥er?(O) (24)

and

0
aﬁm; DL 92)(0,v2) =0, Vv, € L2(O)), ¥ e L2O)). (25)
V2

2.1.1. Existence and uniqueness of a Nash equilibrium
We have the following result:

Proposition 2.1: Let h € L*>(w7). Assume that

220l tDTE2 g N, > e2@laletDTEL (26)

N1>€
4

Then for any h € L*(w7), there exists a unique Nash equilibrium (1, ;) € H for J; and J, associated
to h. Moreover, there exists a constant C = C(||al| 00, T, a1, 0t2) such that

2
A 1
(v, v2) I < ;C (E IZidllz2(0,1)x 0,0 F 1Al 21y + ||)’0||L2(s2)> , (27)
i=1

where

= min (N, — 20+20al)T®2 N 20420jall)TELY (28)
Y 4 4
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Proof: We proceed as in [12,14]. We define by L; the linear and continuous operator from L2 ((’)iT ) to
L?((0, T); H}(R2)) such that L;v; = z; where z;, i = 1,2 is the solution to the following system

821‘ .
— — Azj+az; =vilp, inQ,
zi=0 on X,
zi(0,.) =0 in Q.
Then z; € L2((0, T); H(l) (£2)) is unique and there exists a constant C(||d|| o> T) > 0 such that
||LiVi||L2((0,T);Hé(Q)) =< C”Vi”LZ(oI,T)- (30)

We have that (¥, ¥,) is a Nash equilibrium for (J, J2) given by (23) if and only if conditions (24)-(25)
are satisfied. This means that the following relation holds true:

o; / O —zig)zi dxdt + N,-/ . vivi dxdt =0, forallvy; LZ(OiT), (31)
Q o;

where y = y(h, ¥1,¥;) and z;, i = 1, 2 satisfies (29).
According to the definition of L;, any solution y to (16) can be decomposed as y = L1v; + Lv, + 1,
where I € L2((0, T); Hé (2)) satisfies

ol

E—Al+al=h1w in Q,

I=0 on Y, (32)
10,.) = »° in Q.

Let L} be the adjoint of operator L;. Then L} is a linear and continuous operator from
L2((0, T); HY () to L2(OT). If we replace 7 in (31) by L19 + L9, + I, then (31) becomes

/ r [O[,'L?((Lli\/l + sz/z - (Z,')d - l))Vi + Nii\/i] Vi dxdt = 0, for all Vi € LZ(OIT)
Thus, (1, ¥,) is a Nash equilibrium for (J1, J2) given by (23) if and only if
@ LE(Lidy 4 o) 4+ Nivi = aiLi (zig — 1) in L2(O]), i=1,2. (33)
Now, we define the operator T : H — H by
T, 12) = (OllLi< (L191 + L) + Nivp, a L5 (L + Lavs) + szlz)

and we introduce the bilinear functional B : H x H — R defined by

B ((‘i}l) i\/2)> (Vl’ VZ)) = (T({/la i\/2)’ (Vla VZ))H >

where (.,.)7¢ denotes the scalar product on H given by (20).
Set

A = ((XlLT(Zl)d — l),()lzL;(Zz’d — Z)) .

Then it follows from (33) that the existence and uniqueness of the Nash equilibrium for (Ji, J,) is
reduced to the existence and uniqueness of solution of the following problem: let & € L*(w?), find
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(V1,v2) € 'H such that
B ((71,%2), (v1,v2)) = (A, (v1,v2))3¢,  forall (vi,v2) € H. (34)
Observing on the one hand that (30) holds for v; = ¥;, and on the other hand that,
120 msmica < CUlalloos T (Mlzior + 15l » (35)
because [ is solution of (32), we prove using Cauchy-Schwarz inequality that
|B (1, 92), 01,92)) | = Cl L ) el (v, v2) 15 (36)
where C = C(||al|oo> T> @1, 2, N1, N3) > 0.

Using again (30) and Young’s inequality, we prove that if Ny > e?(!T214l0)T% and N, >
e2(1+2”““°°)T%, then B is coercive, that is,

1B ((vi,v2), (v, v2))| = ¥ (v, v2) 1,5 (37)

where y is defined by (28).
Now using Cauchy-Schwarz inequality, (30) and (35), we have that

(A, (vi, v < Cll(vi, v2) s (38)

where C = Clllalloss T, 01,02) (1 1zial22 0.1y, + 112201, + 13012212 > 0.

Finally, (36), (37) and (38) proves that, the bilinear functional B is continuous on H x H, coercive
on H and that the linear functional (vq,v2) = (A, (v1,v2))7 is continuous on H. Therefore, the
Lax-Milgram’s theorem allows us to say that there exists a unique Nash equilibrium (¥1,9,) € H.

Now taking (vq,v2) = (1, ¥2) in (34) and using (37) and (38), we deduce that

5 1/2
PPN 1 2 2 02
161, 92)l < ZC (Z Izidl 20,1y x 0, F 1P Ty + 110y )
i=1
where C = C(||alloo> T, @1, @2) > 0 and y is given by (28). Hence, we obtain (27). |

2.1.2. Optimality system for a Nash equilibrium
In order to give the optimality system that characterizes the Nash equilibrium (¥;, #,) for the cost
functionals (J;, J2), we interpret relation (31). So, we consider the adjoint state p;, i = 1,2 solution of

i o ; i
_£ — Api+api = ai(y — zia)lo,, InQ
pi 2 on > .
pi(T,) =0 n &

Since «;(y — zid)lo,, € L2(Q), we deduce that the system (39) has a unique solution in p; €
L?((0, T); HY () N C([0, T); L*(RQ)), i = 1,2. Thus, if we multiply (29) by p;, that is the solution
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of (39) and integrate by parts over Q, we obtain that

oei/ zi(y — zig)lo,, dxdt =/
Q

- vipi dxdt =0, foreveryv; € LZ(OiT)-

1

This, together with (31) gives
/ T(j),- + Nivj)v; dxdt =0, foreveryv; € Lz(OiT).
0;

This means that,
N 1. . 7
Vi=——p; inO
i Nip1

i

i=1,2.
We have proved the following results.

Proposition 2.2: Let h € L*>(w7). Assume that (26) holds true. Then, the pair (¥1,%,) is a Nash
equilibrium for (21)-(22) if and only if

A

L. . )
Vi= — Pi n OIT, 1= 1,2, (40)
i

N;
where (3, p;) is solution of the following systems

A

ay N . 1. 1. .
— — Ay+ay=nhl, — ﬁpll(’)l — —plp, inQ,
1

ot N2
2, on X, )
20 :yo in Q
and
pi . ; i
_£ — Api+api = ai(y — zia)lo,, InQ
P on X, “
pi(T,) =0 n &

2.2, Carleman inequalities

In this subsection, we establish the inequality of observability useful for solving the null controllability
of the cascade linear system (41)-(42). We assume that w; is an unbounded set with w; C w and such
that

Q\ w; isbounded. (43)
Remark 2.1: Note that with (43), we have that assumption (3) holds true.

Since the second assumption of (10) holds, that means Oy N @ # @, then there exist an open set
wq such that
wy) Cw; COsNw withdy = dist (wg, 2\ 1) > 0, (44)

and a function ¥ such that

v eCi(Q), Y>>0 ing,

VY| > 19 >0 inQ\a)O,
oy (45)
5 = 0 ondQ, Y IDPYl<n ng

where 1 and 7, are two positive constants. For the construction of such a function ¥ in the case when
the domain Q is unbounded, we refer to [26].
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Let A be a positive real number. For any (t,x) € Q, we define the functions

MY ()+m)
x) = ———, 46
o(t,x) T—D (46)
MV 0@ Fma) _ oh(y @+m)

n(tx) = T—D , (47)

with my > mj. Then, there exists a positive constant C(T) such that,

‘a—” < c(n)?, (482)
Jat
d
TS (48b)

For any Fy € L*(Q) and zy € L*(2), we consider the following system:

0z .
v Az=Fy, inQ,
z=20 on X, (49)
z(T,") =z in Q.

We have the following result which give a Carleman inequality for solution to the system (49).
Proposition 2.3 ([26]): Suppose that assumptions (44)-(45) hold true. Let ¢ and n be defined by
(46) and (47), respectively. Then, there exist positive constants o1 (7o, T1,do) > 1, A1(70, T1,do) > 1 and

C(t0, 71, do) > 0 such that for all & > Ay, s > s; = o1(T + T?), and for any solution of (49) denoted
by z, we have

SAZ/ e 2Np|Vz|? dxdt + 53A4/ e 23212 dx dt
Q Q

T
< C(0, 71, do) (5314 / / e 9% |z)* dx dt + / e | Fo|? dxdt) : (50)
0 w1 Q
Now, consider the following system:
0z .
~% —Az4az=f inQ

z=0 on X,
Z(T, ') = 20 ln Q:

(51)

with f € L2(Q) and zy € L*(R2). Then, we have the following result for (51).

Proposition 2.4: Under the assumptions of Proposition 2.3, there exist positive constants o1 (%o, T1, do)
> 1, 1(70, T1,dp) = 1,5 = max(51,4C(to,11,d0)||a||§0) > 1and C = C(v9, T1,do) > 0such that for
all A > A1, s > s, and for any z solution of (51), we have

SAZ/ e_ZS”goIVz|2dxdt+s3A4/ e 23|22 dx dt
Q Q

T
< C<53A4 / / e 213|212 dx dt + / e_zs”Lﬂdedt). (52)
0 w1 Q
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Proof: We write system (51) as

d0z .
—E—Az:(—az—}-f) in Q,
z=20 on %,
z(T,") = zg in Q.

Hence, z verifies (49) with Fy = —az + f € L?(Q). Thus, we can apply Proposition 2.3 to z and we
deduce that there exists C = C(ty, 71, dg) > 0 such that

sAZ/ e_23”¢|Vz|2dxdt+s3A4/ e 23|22 dx dt
Q Q

T
< C<s3k4f / e_zs”(p3|z|2dxdt+/ e_zsnlﬂzdxdt)
0 w1 Q
+||a||§oc(f e_23”|z|2dxdt+52A2/e_25”¢2|z|2dxdt>.
Q Q

Observing thats, A > 1and ¢! € L*°(Q), it follows from the latter inequality that, there exists C =

C(tg, T1,dp) > 0 such that

SAZ/ e_25”¢|VZ|2dxdt+s3A4/ e 23|22 dx dt
Q Q
T
<C <53A4/ / e 23|22 dxdt—i—f e =Mf)? dxdt)
0 w1 Q

+ ||a||§oc<2szx4f e_25’7<p3|z|2dxdt>.
Q

Choosing s > s, = max(sy,4C(7o, 71, do) ||a||§o) in this latter inequality, we obtain (52). |
Remark 2.2: If we make a change of variable ¢ for T—t in (51), we have
0z . .~ .
5—Az+az=f in Q,
z=0 on X, (53)
2(0’ ) =2y in Q,

where z(t,x) = z(T — t,x) and f(t, x) = f(T — t,x). Then, the global Carleman inequality (52) is

also valid for any Z solution of (53).

From now on, we will adopt for a suitable function z, the following notation

K(z) = si? f e 29| Vz|? dx dt + s> / e 23|z dx dt. (54)
Q Q
For pT € L?(2), we consider following systems:
ap .
vl Ap +ap = 011‘1’11(91,,, + 012‘1’21(92,,, in Q,
p=0 on %, (55)
in €2,

p(T,) =p"
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and fori = 1,2,
Wi AW+ aw L lo inQ
—_ = i+ a¥; = —— . inQ,
3t i i Nip O; (56)
v, =0 on X,
¥;(0,.) =0 in Q.

Since the first assumption of (10) holds, if we set ¢ = o} W1 + a5, then in view of (56), ¢ is solution
to

¢ o] o .
__A¢+a¢=__10101 __10102 an)
at N; N, (57)
¢=0 on X,
$(0,)=0 in 2,
and (55) can be rewritten as
ap .

———Ap+a/0=¢1(9d an)

p=0 on %,

o(T,) = pT in Q.

In the following result, we present the Carleman inequality for solutions to systems (57)-(58).

Proposition 2.5: Assume that the N;, (i = 1,2) are large enough. Then, under the assumptions of
Proposition 2.4, there exist positive constants s3 > 1, ky > 1 and C = C(79, 71, do, T) > 0 such that for
all . > Xy, s > s3, the following estimate holds true for any solution (¢, p) of (57)-(58):

K(p) + K@) < C3° [ e *197|p|* dxdt. (59)
wT
Here, s3 = max(s,,2C(t, T1,dy, N1, Np, a1, 002)) and Ay = max(A1,2C(1g, T1,do)) with A1 and s,
defined as in Proposition 2.4.

Proof: We proceed in two steps.
Step 1. We prove that there exist s3 > 1,1, > 1 and C = C(79, 71,dp) > 0 such that for any s > s3
and A > Ay,

T
K(p) + K@) <C (s%‘* /0 f e 216 (Ipl” + 191%) dxdt>. (60)

Applying (52) to the solution p of (58) and to the solution ¢ of (57) because of Remark 2.2, then using
the notation (54), we, respectively, have that there exists C = C(tp, 1, dp) > 0 such that

T
K(p) < C(zo, 71, dp) (s3x4 / / e 2193 |p|* dxdt + / e25"|¢>|2dxdt)
0 w1 Q

T
< C(19, 71, 4d0) (53A4/ / e 23| p|? dxdt—}-/ SA3p3e 3¢ dxdt)
0 w1 Q

and

T
K(¢) < C(to, 71, dp)s’ 1* / / e 293 || dxdt
0

w1
(23]
Ny

o
N,

2
+ Clto, 11, do) / e dedt
Q

rlo, + —plo,
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T
< C(10, 71, do)s> 1* / / e 293 |p|* dx dt

0 w1

+ C(To,ﬁ,do,Nth,oq,az)/ SatpPe 2 p|? dxdt,
Q

because s, A > 1 and ¢! € L®°(Q). Consequently,

T
K(p) + K(¢) < C(zo, 11, do) <s3x4 / / e 293 |p|* dxdt + / s3x3¢3e2“7|¢|2dxdt>
0 w1 Q

4 Clrgy 71, do)s*2 / 10362 dx dt
Q

+C(TO)TIadO»NIaNZ)alaaz)/ 52)"4(p3e_23r’|p|2dxdt'
Q

We set s3 = max(sy, 2C(to, 71, dg, N1, Na, a1, 2)) and A, = max(Aq,2C(19, T1,dp)). Then if we

choose in this latter inequality, s > s3 and L > A, then (60) holds true.

Step 2. Now, we want to eliminate the local term corresponding to ¢ on the right-hand side of the

estimate (60).

So, let w, be a nonempty open set such that w; C w» C Oy N w. Introduce as in [27] the cut off

function £ € C5°(2) such that

0<é=<1l, §=linw, §=0inQ\wy,
Ag

=75 € L®(w,), Ve € [L™(w2)]".
S /2 51/2

Set u = $>A%p3e=2". Then u(T) = u(0) = 0 and we have

0 B B
_u:u 3(p_1_§0_25_77 ,
ot ot ot

V(&) = u[(BA + 2sA0)EVY + VE]
and

AE) = ut (14512 + 45°220% + 02| VY | + uE Ay (BA + 2sA0)
+ 2u(3A 4 25A0) VY. VE + uAE.

If we multiply the first equation of (58) by u£ ¢ and integrate by parts over Q, we obtain

o ) a; ) ou
- — lp, dxdt — — 1p, dxdt — dxdt
N QWEIPI O, NZ/QMSIPI o, dx +/Qp$¢ ar

—2/,0V¢.V(u$) dxdt—/ POA(LE) dxdt:/ u$|¢>|210ddxdt.
Q Q Q

(61a)

(61b)

(62a)

(62b)

(63)
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If we set

o o du
1= ——1/ u$|,0|21(91 dxdt — —2/ u.$§|,o|21(92 dxdt, |, =/,0§¢— dxdt,
Q N> Jg Q ot

N
= —Z/QpV¢-V(uS) dedt, Jy= —/QMPA(uE) dx dt,

the formula (64) can be rewritten as
h+h+h+h= / u|¢>|21@d dx dt.
Q
Let us estimate J;, i = 1,...,4. We have

o]
I :_ﬁ ut|p|*10, dxdt——/ ut|pl’10, dxdt

- <a1 n a2>/53k4<p3e25’7|,0|2 dx dt.
N; Q

Using the Young inequality, (48a), (61a), (62a) and (63), we obtain that

ou
Jo = /prg dxdt

0 0
f§u|¢| dxdt+—/su|p| |:l8<p_2( ‘p> + 8s ( ”) } dx dt
ot ot
ﬁ/ / u|¢>|2dxdt+C(T)/ /55)»4g076725’7|,0|2dxdt,
2 0 w] 0 w3

for some y; > 0.

IA

3= —2/ oVe.V(ut)dxdt
Q
= —2/ PEUBA + 2shp)Vr. Vo dxdt — 2/ ouVe.VE dx dt
— 2

1
—/s)upe 20|V p|2 dxdt-l—C(rl)/ / s’ 097 3 p|? dx dt.
Q

Js = —/szbA(ué)dxdt,

= —/ puép (14532 + 4s22%@? + 922)|Vyr > dxdt — / pUEPAY (31 + 2shp) dx dt
Q Q

— 2/ pud BA + 2shp)Vip.VE dx dt — / pup A& dxdt,
Q Q

(64)
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which after some calculations gives

S T T
Ja<) &/ / ulg|* dxdt + C(n)/ / 2897 p|* dx dt,
i=2 2 0 w1 0 wy

for some y; > 0, i = 2,...,5. Finally, choosing the y; such that Y_>_| % = 1, it follows from (64)

that

T
/ / Satpde ™2 dxdt < f shpe 2|V dx dt
0 w1 Q

T
—i—C(rl,T)// 209 e 3 p|? dx dt
0

+ <ﬂ + 2) / SAtpde ™ p|? dxde.
Q

N N

Combining (60) with (65), we deduce that

K(p) + K(@) < C(zo. 1, do) / e 2|V dxdr
Q
T
+ C(v0, 71, do, T)/ f s’ 227 e % p|? dx dt
w)

a1 4 3 -2, 12
— C(to, 11, d A n dx dt.
+ (Nl + Nz) (t0,T1 0)/ sSA e e p|

Taking in this latter inequality A > X, = max(1,2C(7, 71, dp)), we get

T
K(p) + K(¢) < C(zo, 11,do, T) f f s 0@ e 5 p|? dx dt

(65)

+ (— + —) C(to, 1, do) / sSatpe > p|* dxdt.

N

Taking Nj, (i = 1, 2) large enough, we can absorb the last term of the latter inequality in the left-hand
side. Using the fact that w; C w, we deduce (59). |

Now, we are going to establish the observability inequality of Carleman in the sense that the weight
functions do not vanish at t = 0. We define the functions ¢ and 7 as follows:

T . T
(0(5,36) ifte |:O)Ej|’
Hit,x) = . (66)
o (t,x) ift e |:—, T]
2
and
T . T
7](5,)(7) ift e |:0, E:|,
(0 = . (67)
n(t,x) ift € |:E’T:|

Then in view of the definition of ¢ and n given by (46) and (47), the functions ¢(.,x) and 77(., x) are
positive functions of class C! on [0, T[. From now on, we fix A = A, and s = s3.
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We have the following result.

Proposition 2.6: Under the assumptions of Proposition 2.5, there exist positive constants s3 > 1 and
A2 > 1 and two positive weight functions = 6(t) and w = w (t,x) such that for any solution (p, ¥;)
of (55)-(56), we have

2
1
2 2 2. 12 2
1000, )l /Q_wzlpl dxdt—i—;:l/QO || dxdtSC/lepl dx dt, (68)

for some C = C(||al|co> To» T1,do, T) > 0.

Proof: We proceed in two steps.
Step 1. We prove that there exist a constant C = C(||a||c0> 70, T1,do) > 0 and a positive weight
function @ such that

1
o (0, -)||iz(9)+/Q;|p|2dxdts c/T|p|2dxdt. (69)

Let us introduce a function 8 € C'([0, T]) such that
0<B8<1, BM® =1 fortel0,T/2], B(t)=0 forte[3T/4,T], |8 ()| <C/T. (70)

For any (t,x) € Q, we set
¢(tx) = e "V p(t,x),

where r > 0. Then in view (58), the function ¢ is a solution of

—Z—i — At +ar +rt = pe 010, — eI inQ
=0 on X%, (71)
o(T,) =0 in Q.

If we multiply the first equation in (71) by ¢ and integrate by parts over Q, we get

l

3T/4 1 [37/4
+-/ / |¢|2dxdt+—/ / |p|? dx dt.
2 Jo Q 2 )2 Ja
Hence, choosing in this latter inequality r = ||a||cc + % and using the definition of ¢, we obtain that

T/2 T/2

/|,o(0,x)|2dx+/ /IV,O|2 dxdt—i—/ /|p|2 dxdt

Q

3T/4 3T/4

< C(llalloo, T) (/ /Ifi)l dxdt+/T/ /Ipl dxdt)

2

Now, using the fact that the functions ¢ and 7 defined by (66) and (67), respectively, have lower
bounds for (t,x) € [0, T/2] x €, we get

/Q 1p(0,%)|* dx + E[O,T/z] (0)
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3T/4 3T/4
< C(llallco, T) (/ /|¢>| dxdt+/T/ /Q|p|2dxdt>, (72)
2
b ~ b .
Kiap (2) = / /Q e 293 |Vz|? dx dt + / fQ e 293322 dx dt. (73)
a a

Adding the term E[O,T /21(¢) to both sides of inequality (72), we obtain

and

/Q 1p(0,%)|* dx + IE[O,T/Z] (p) + E[O,T/Z] ()

3T4 3T4
< C(llalloor D) (/ f|¢| dxdt+/m [|p| dde>+’C[0T/2](¢)- (74)

In order to eliminate the term IC[O,T 121(¢) on the right-hand side of (74), we use the standard energy
estimates of system (56) and we obtain

/2 ) /2 ) . /2
\% dxdt dxdt < C dx dt,
fo f9| " +/0 /Q|¢| < (ZNZ 2N2)/ /|p|

where C = C(J|allco, T) > 0 is independent of N;, (i = 1,2). Since the functions ¢ and 7 have lower
and upper bounds for (t,x) € [0, T/2] x 2, from the previous inequality we obtain

T/2
/C[o 1/21(@) < C(llalleo, T) <2N2 2N2)/ / 25063 | p|? dx dt. (75)

Replacing (75) in (74) and taking Nj, (i = 1,2) large enough, we obtain

~ ~ 3T/4
/Q|p<o,x)|2dx+ic[o,r/2](p>+Ic[o,m]<¢>sC(uanoo,T) (/T/ fQ<|p|2+|¢|2)dxdt).
2

(76)
Since the functions ¢ and 7 defined by (46) and (47), respectively, have the upper bound for (¢,x) €
[T/2,3T/4] x 2, using (59), we obtain

fg 10(0,%) > dx + Ko.1/21(0) + K[o.7/21(@) < C (lalloos T) (K(p) + K())

< Clllalloc, T, 70, 71, do) / L& |pl? dxdt. (77)
[

On the other hand, since n = pand ¢ = ¢ in [T/2, T] x €2, using again estimate (59), we obtain

Kiram ) + Kirjan (@) = K(p) + K(¢)
< Clllalloor T, 700 71> o) / e dxdt (78)

Adding (77) and (78) and using the fact that e 23197 e L®°(Q), we deduce that
1p(0,)11F2q + Kio.11(0) + Kio,11(@#) < Clllalloo, T, 70, 71, do) / ol dxdt. (79)
w
Using the definition of /E[a,b] given by (73), we can rewrite the inequality (79) as

T - T -
100gy + [ [ e2i@pPaxdrs [ [ eigippasarzc [ pPaxdn 60
0 JQ 0 JQ ol

where C = C(||alloo> T 79> T1,dg) > 0.
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We set
1

w?

— o293, (81)

Then, from the definition of ¢ and 7; given, respectively, by (66) and (67), we have that # € L*(Q).
Using (80) and (81), we deduce (69).

Step 2. We prove that there exist a constant C = C(||a||c0> 70, T1,do) > 0 and a positive weight
function 6 such that

2
Z/ 02|, dxdt < c/ lo|? dx dt. (82)
i=17Q ol
We set
no(t) = max7(t, x). (83)
xeQ

Then, )y is also a positive function of class C! on [0, T[. We define the weight function 6 by:
0(t) =e =W € L%, T). (84)

Multiplying the first equation of (56) by 62W;, i = 1,2 and integrating by parts over £2, we obtain that
92|qz 12 dx + / 0%V W;|? dx
1
—/ 62 a W2 dx — —/ 92p\lf,-dx—53/ 62 ’7°|\y| dx.
Q Ni Jo, Q
Hence, using the fact that a7 /9t is a positive function on [0, T'), we deduce that

1 1
Ol dxt o /NW%FMS<MM+—>/W%VM+—7/O%MM
2 Q 2Ni O;

2dt

1d
2dt

Consequently,

d 1
— ([ 1owildx) < D [ 16w dx —/ 6%|p* dx.
G (L) = @it +n [owpacs & [ oo

1 i

Using Gronwall’s Lemma and the fact that W;(x, 0) = 0 for x € €2, we obtain that
/ 0% W;(x, t)|> dx < C; / 0%|p|*dxdt, forallt € [0, T], (85)
Q Q

where C; = C(||alloo, T Nij) = e(2”“”°°+1>T$ >0, i=12.
In view of (83), (84) and the fact that $~! € L*°(Q), we have that

/92|p(x,t)|2 dxdtg/e*253ﬁ¢3|p(x,t)|2 dx dt,

Q Q

which combining with (85) and (69) yields
/92|\11i(x,t)|2 dxdr < c/ lp(x,0)|? dxdt, i=1,2,
Q T

where C = C(||a|loo,> T> N1, N2, 79, T1, dg) > 0. Hence we deduce (82).
Finally, adding estimates (69) and (82), we obtain (68). |
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2.3. Null controllability (Problem 1.2 for system (16))

In this subsection, we will achieve the proof of Theorem 1.1. We look for a control h € L? (07) such
that the solution (¥, p;) of

A

0 R R 1 . 1 . .
o Ay+ay =hl, — —pi1lp, — —p2lp, inQ,
ot N N2 (86)
=0 on X,
700,.) =" in Q
and
ap; . R . .
v Api+api = ai(y — zig)lo,, InQ,
pi= onyY, (87)
Pi(T,) =0 inQ,

satisfies (7).
To prove this null controllability problem, we proceed in three steps using a penalization method.
Step 1. For any ¢ > 0, we define the cost function:

1 . 1
Je(h) = g”)’(T, shllz@) + 5||h||L2(wT)~ (88)
Then we consider the optimal control problem:

min J.(h). (89)
hel2 (o)

Using minimizing sequences, we prove that there exists a unique solution ftg e L2(wT) to (89). Using
Euler-Lagrange first-order optimality condition that characterizes the solution ., we can prove that

S

he = p. inowr. (90)

where 0 is solution of

N 2
ap . ~ 2 .
_3_1‘8 — Ape +ape = Zai\pisl(’)d in Q,
i=1
Pe =0 on X, 1)
n 1, .
pe(T,.) = —g)/s(T, ) in ,

with (W, Ve» Die) are solutions of

a\i/is 2 2 1. .
- A\I]ig + a“pi&‘ = __10810,‘ m Q3
Aat N; (92)
v, =0 on X,
U,(0,.) =0 in Q,
3Pe N . 1. 1. .
- — A)’s +ay. = helg, — _plsl(’)l - _PZSIOZ in Q,
Aat N1 N2 (93)
Ye=0 on %,
$:(0,) =° in Q
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and
af)is A ~ ~ .
~ 5 Apie + apie = ai(ye — zig)1lo, nQ,
pie =0 on X,
pie(T,) =0 in Q.

Step 2. We give estimates on Je, P1¢, Pae, ]:lg independent on &.

(94)

If we multiply the first equation of (93) by p, solution of (91) and the first equation of (94) by

W, i = 1,2 solution of (92) and integrate by parts over Q and use (90), we obtain that

2 1 T
-) . = Piefe dxdt + |1Bp |12
;Ni/() /0,- e el ")
= LT gy — [ #5e0 x)dx+ia- jeWie dxdt
= B Vell, 12(Q) Q)’ Pe (U, - i O;y‘g ie
and

T
- —/ Prepe dxdt:oq/ jzg\illgdxdt—oq/ 214V dx dt,
0 Jo o7 o7

d

| Y . .
- — / DPrepe dxdt = ay / YeWoe dxdt — oy / 25, 4Wae dx dt.
N2 Jo Jo, or o7

d

Adding (96a) to (96b), then combining the result with (95), we deduce that
] 2
Vel T2 ry + S 176 (T 2 gy = D et /O 7 Yie dxdr — /Q ¥ 5e (0, x) dx,
i=1 d

which using the Cauchy-Schwarz inequality and the fact that 52,-,65 € LZ(Og) gives

‘9%

1
gzi,d

2
~ 1
el r A =17 (T ) Pagoy < Y
& LZ(a)T) £ yE LZ(Q) ; 1 Lz(og) LZ(Q)

+ 1° Nl 2o 1166 (0 Ml 120 -
This implies that

1 2

gzi,d

1/2
~ 1 .
e N2y + <196 (T> )2y < (Z of + ||y°||§_z(m)

i=1 2(0h)

1
From which we deduce that

2
el ) < (Z of
=1

) 1/2
+ ||y°||§2(9))
)

20}

5 , 172
. A 2
x (,:1 0@ gy TP .)||Lz(9)> .

(95)

(96a)

(96b)

97)
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1/2
2
N 2

2
x (Z o
i=1
Using the observability inequality (68) to p. and W;, i = 1, 2 solutions of (91) and (92), we get
2
> [ 18P et 160, =€ [ | 1A dxdt 59)
._ Q w

for some C = C(||a|| 00> T0> T1>d0, T) > 0. Therefore combining (98) with (99), then using the fact
that (90) holds true, we have that there exists a constant C = C(||a]| 00> T0> T1, do> T) > 0 such that

lel2r, < C (Za

Hence, we deduce that there exists C = C(||a|| o0 To> T1>dg, T) > 0 such that

2

12
~Zid + ||)’0||iz(g)) ||h6||L2(wT)

200

2 1/2
e Nl 2 o Ly + 15013 , (100)
(@0 = ZI: 2O (@)
and it follows from (90) that
2 ) 1/2
1l 2@y < Clllalloo 0, 71, do, T) (Z 57| OT)+||y°||§2(Q)) : (101)
1

Using again (97) we have

2

L .

i=1

1/2
Zld + ||)’0||]2_2(Q))

1/2
2 A 2
LZ(Q) + ”108(0’ )”LZ(Q)) >

200

2
3 (Z Jos.
i=1

which combining with (99) and (101) gives

) 1/2
15¢(T, Mgy < Cllalloos o, 71, do, TIVE (Z o B ||y°||iz(9)> . a0
1

In view of (27), (40) and (100), we have that

N 1,
”Vié‘”Lz(OiT) = H_ﬁipie

1200

2
< C(llallos, T, 1,02, N1, N2) (Z Izidll2or) + Ihell2gr) + ||y°||Lz(Q>>
i=1

sz

<C (Z lzidll 2 o)

+ ||)’0||L2(sz)) ,
d
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where C = C(]|al| 00> @1, &2, N1, N2, 79, T1, do, T) > 0. Hence, for i = 1, 2, we have that

2 2
<C (Z lziallzom) + )
i=1 i=1

where C = C(”“”OO) C(],(XZ,NI,NZ, 70, fl)d()) T) > 0. USing (103)) (100)) (101)$ (93)) (94)) (92)) we
prove that there exists C = C(||al|co> @1, &2, N1, N2, 7o, T1, do, T) > 0 such that

1
g %d + ||)’0||L2(Q)) , (103)

1,
__pis
H Ni© ll2om) 207

2 2
1
o 0
||y€||L2((0,T);Hé(Q)) <C (”}’ ”LZ(Q) + Z ||Zi,d||L2((9§) + Z gzi,d or ) > (104a)
i=1 i=1 L2(Op)
2 2 1
~ 0
1Biell 20,y < C (Ily 2o + Zl lzidll 201, + Zl 5%id mT)) : (104b)
= 1= d

Note that (104b) is valid for i = 1, 2. .

Step3. We study the convergence when ¢ — 0 to the sequences he, Ve, Pig, i = 1,2 Ui, i=1,2
and pg. .

In view of (100), (103), (104a) and (102), we can extract subsequences still denoted by A, . and
Die such that when ¢ — 0, we have

128 — fzweakly in L)), (105a)
Je = yweaklyin  L*((0, T); Hy(2)), (105b)
pie — piweaklyin L*((0, T); Hy (2)), (105¢)
¥(T,.) — 0 strongly in L2(Q). (105d)

From (103) and (105c), we obtain that

~

1, . :
—ﬁpig—\viz—% inof, =12 (106)
i

i

Moreover, using the weak lower semi-continuity of the norm, we deduce from (105c¢), (106) and (103)
that

1
gli,d

2 2
¥ill 20 < € (Ilyollmm + > Nzl zon +
i=1

i=1

) , (107)
20h
where C = C(||al| 00> @1, &2, N1, N2, 79, T1, do, T) > 0.

Let D(Q) be the set of infinitely continuously differentiable functions with compact support on Q.
If we multiply the first equation in (93) by ® € D(Q) and the first equation in (94) by &; € D(Q), i =
1,2, and integrate by parts over Q and then take the limit when ¢ — 0 while using (105a), we,
respectively, deduce that

2
od 1 N
y|l— - AD ® ) dxdt = — — p;® dxdt h® dxdt,
[ (-5 - a0 +as) D5 Joy o arae [ o a
and

. [ 0&; N )
/Qpi (a—i — A& + ﬂ&') dxdt = Oti/Q()/ -z, dxedt, i=1,2,
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which after an integration by parts over Q, gives, respectively

A 2
9y 1 . .
/ (E — Ay+ay) d dxdt = i:EI ﬁi/(’)fpiq) dxdt—}-/wT h® dxdt, forevery ® € D(Q),

and

A

/ <_88% - Apl + ap ) Ei dxdt = / (j\/ - Zi,d)l(’)dsi dxdt’ for eVery 'S;:l' I= D(Q), l — 1,2
? Q

Hence, we deduce that

ay .
8}15/ y+ay= Z—p,lo +h1w in Q, (108a)

— % — Ap, + aPz = ai(j’ - Zi,d)lod inQ, i=12 (108b)

Observing that 3, p1,p> € L*((0, T); H)(€)) and &, %21 and 22 belong to 12((0, T); H~(R)) we
deduce that (0), (T), p1(T) and p,(T) exists in L*(2). The traces of (1), p1(¥) and p,(¢) exist in
L*(T") for almost every t € (0, T). Therefore passing to the limit in the second and third equations
of (93) and (94), we obtained from (105b) and (105c) that

y=0 onkX, (109a)
pi=0 on%, i=12, (109b)
pi(T,)=0 inQ, i=12, (109¢)
70,) =" in (109d)
and it follows from (102) that
y(T,) =0in Q. (110)

Thus y = j(t, x; h, 1, 72)) and pi= f)i(il), i = 1,2 are solutions of (86) and (87).
If we apply the Carleman inequality (68) to p, and W, i = 1,2, we deduce that there exists C =
C(llall 00> T0> T1, do> T) > 0 such that

2
1, . R
fQ;mgﬁ dxdt+ j/Qe2|\y,-,€|2 dxdt < /T|,og|2dxdt
i=1 @
( 2
=1

because (101) holds true. Hence in view of the definitions of & and 6 given by (81) and (84), it can
be readily seen that there exists a constant C > 0 such that

_sz

+ 1YL )
L2 ((9

1
6°>CinQ and — >CinQ (111)
w
and therefore we can obtain

H ‘i'is

2

o il = (Z ...

+ ||y°||i2<m> , (112)
d
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where C = C(|al|oo> To> T1, do, T) > 0. Using (92) and the inequality (112), we obtain

2 2
1pellr2(q) < C(Z i + 1717 Q> (113a)
=197 oy ©
2 2
1Wie |l 20, < € D | 52 + 112 ) (113b)
i—1 2(0%)

where C =AC(||a||oo, 70, T1,do, T) > 0. In view of (113a), we can extract subsequences still denoted
by p. and W;, such that when ¢ — 0, we obtain

ps — p weakly in L*(Q), (114a)

~

;e = U;  weakly in L2((0, T); Hy (2)). (114b)

From (90), (105a) and (114a), we have (12). Proceeding as for convergence of . in pages 23 and 24
while passing to the limit in (92), we prove using the convergence (114b) that W;, i = 1,2 satisfies (14).
Passing to the limit in (91) while using (114a), we prove that / satisfies (13).

It then follows from (106), (108a), (109a) and (110) that h, ¥, p1 and p, solve the null controllability
problem (86)-(87) and (7). Finally, using the weak-lower semi-continuity of the norm and (105a), we
deduce from (100) the estimate (15).

3. The semi-linear case

Now to prove the hierarchic control of the semi-linear system (1) is equivalent to prove that
Theorem 1.2 holds true. We thus need to solve Problem 1.1 and Problem 1.2. To this end, we
rewrite (1) as follows

dy .

rrin Ay +f(Mlg\w = vilp, + 21, + hl, inQ,

y=0 on X, (115)
$(0,.) = y° in Q.

Then h is a control of system (115) if and only if k = f(y) + his a control of system (1). By writing (1)
in the form (115), we bring the nonlinearity in a bounded sub-domain of 2 according to hypothe-
sis (3). This fact is important to obtain the compactness properties required to apply the fixed point
argument for dealing the nonlinear case.

Now, we will obtain an optimality system that characterizes any Nash quasi-equilibrium.

3.1. Characterization of Nash quasi-equilibrium

Here, we solve Problem 1.1 associated to (115). For any h € L*(wT), as the system (115) is nonlinear,
the cost functions J; and J, are not convex in general. We consider a weaker concept of equilibrium
and now, we look for the Nash quasi-equilibrium 7; = 91 (h) € L? (OIT Yand ¥, = ¥, (h) € LZ(OZT ).

According to Definition 1.1, a pair (¥, ¥,) is a Nash quasi-equilibrium of (115) and (4) associated
toh € L2(w?) if (8) and (9) hold. This means that

oz,-/ T(j/ —zig)Zidxdt + Ni/ . Vividxdt =0, foreveryv; € LZ(OiT), (116)
ol o



APPLICABLE ANALYSIS (&) 25

where Z; is solution of

9Z; R .

8—; — AZi+f(lawZi = vilo, inQ,
Zi=0 on X,
Zi(0,) =0 in Q.

(117)

In order to interpret (116), we consider the adjoint state p; € L2((0, T);Hé () NC([0, T); L*()),
i = 1,2 solution of

opi N . R R .
T Api +f Mlo\wpi = ai(y — zia)lp, inQ,
pi=0 onyx,
ﬁ,’(T, )=0 in Q.

If we multiply the first equation in (117) by p; and integrate by parts over Q, we obtain that

oe,-/ Zi(y —zig)dxdt = / vipidxdt =0, foreveryv; € LZ(OiT),
or or

d

which combining with (116) gives

A

1.,
Vi=——p; in O»T, i=1,2.
i

ﬁ i
We thus have proved the following results:

Proposition 3.1: Let h € L*>(w”). Then, the pair (¥1,7,) is a Nash quasi-equilibrium for functionals
Ji» i = 1,2 given by (4) if

. Lo
Vi = —lvlpl mn Oi 5 i=1,2, (118)

where (3, p;) is solution of the following systems

3y 1 1

=0 on X,
5}(0> ) = )’0 in Q
and
WPi | n . N -
T Api +f (M 1g\wpi = ai() — zig)lp, inQ,
pi=0 on X%, (120)
pi(T,) =0 in Q.

3.2. Proof of Theorem 1.2

To complete the proof of Theorem 1.2, we will solve Problem 1.2 associated to (119)-(120). We
are interested in proving that, there exists a control h € L*(w7) such that if (3, pi) is solution
of (119)-(120), then (7) is satisfies.
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We observe that, for any y € L?((0, T); L?(R2 \ w)), we have

fG) = f(0) = a(®)y,
where a(y) is defined by

1
at) = [ fio)do. (121)

Now, for any z € L?((0, T); L*(2 \ w)), we consider the linearized system

ay . . 1. 1. .
5 - y+ a(Z)IQ\wy = hlw - N_1p1101 - EPZIOZ mn Q)

y=0 on XY, (122)
$(0,.) = ° in ,
where p;, i = 1,2 is solution of
0p; R . N .
“ar Api + c(@)1g\wpi = ai(y — zid) 1o, inQ,
. ot (123)
pi=0 on %,
Pi(T,) =0 inQ,
with
c(2) =f'(2), VzeLl’(0,TsLH(RQ\w).
Since f € WH(RR), we have that
a and cbelongto L°((0,T) x (2 \ w)). (124)

Now, we want to prove that systems (122)-(123) is null controllable. For this, we consider their
following adjoint systems:

ap .

vl Ap + a(@)lg\wp = Wil + 2210, inQ,

p=0 on X, (125)

p(T,) =p" in Q,

and fori = 1,2,

ov; 1 .
— —AVY; + C(Z)IQ\CL)‘"IJI' = __10101 inQ,
v, =0 on X,
v;(0,.) =0 in Q.

Proceeding as in Section 2.2, we show that the observability inequality associated with sys-
tems (125)-(126) is given by

2
1
2 2 2. 12 2
1000, )l /Q_wzlpl dxdt—i—;:lfQO || dxdtSC/lepl dx dt, (127)

where C = C(||allco> l|¢lloo> To» T1, do, T) > 0, the weight functions zr and 6 are given by (81) and (84),
respectively.

Now, using this observability inequality and proceeding as in the Section 2.3, we show that, for
any z € L>((0, T); L*(Q2 \ w)), there exists a control h= fz(z) € L*(w") such that if (9, pi) is solution
of (122)-(123) then (7) is satisfied. Moreover, h satisfies (15).
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We now consider a nonlinear map
$: L2((0, T); L2(R2\ w) — L*((0, T); L*(R \ )
such that, for every z € L?((0, T); L*(Q \ w)), S(z) = j where (3, p;) are solutions of (122)-(123).
Proving that S has a fixed point y € L>((0, T); L*(R2 \ @)) will allows us to say that j is solution of (115)

and consequently, will be sufficient to finish the proof of Theorem 1.2. To this end, we use the Schauder
fixed-point theorem.

Proposition 3.2: (1) S is continuous,
(2) Siscompact,
(3) The range of S is bounded; i.e.

IM > 0: [IS@ 202w <M Yz e L0, ;L2\ w)).

Proof: Throughout the rest of this work, the expression || - ||@\,, will denote || - [|150((0,7)x (@\w))-
(1) S is continuous.
Let (z,) be a sequence such that z, — z strongly in L2((0, T); L>(2 \ ®)). Then we can extract a
subsequence of (z,,) denoted (z,,,) such that

Zp, — z almost everywhere (a.e.) in (0, T) x (2 \ w).
Therefore, f being a function of class C1, the functions a and c are continuous and we have

a(zy,) — a(z) aein(0,T) x (2 \ w),
c(zy) —> c(z) a.ein(0,T) x (2 \ w).

It then follows from (124) and the Lebesgue dominated convergence theorem that

a(zy,) — a(z) strongly in L*((0, T) x (Q \ w)), (128a)
c(zn) — c(z) strongly in L*((0, T) x (2 \ w)). (128b)

As Theorem 1.1 holds for every z € L?((0, T); L*(R2 \ w)), it also holds for z,, € L*((0, T); L*( \
w)). Thus the control h,, = h(z,,) is such that y,,, = §(z,,) satisfies

Wy . .
- A)’nk + a(znk)lﬂ\wynk = Tnk mn Q)
L0t (129)
Y =0 on X,
P (0,.) = »° in Q,
where 7, = ﬁnklw — Nilfyl,nkl(gl — leﬁz,nkloz and pip,, i = 1,2 is solution of
8f)i)"k ~ ~ o ~ .

_T - Api,nk + C(an)lﬂ\wpi,nk = Oli()’ - Zi,d)IOd m Q)

Pinm, =0 on X, (130)

f’i,nk(Ta )=0 in €2,

In(T,) =0 inQ (131)
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and
A _ ﬁi,nk . T .
Vi, =——— in0O;, i=12. (132)
N;
Moreover,
By = P, N, (133)

with 5y, solution of

R 2
ap . N - .
——k Apnk + a(znk)lﬁ\wpnk = Z ailyi,nklod inQ,
ot ;
(134)
P, =0 on X%,
P (T, = p" in Q,
and \iJi,nk, i = 1,2, solution of
3\i’i,nk N N 1 . .
T a. Aq‘ji,nk + C(znk)lﬂ\w\yi,nk = —_Pnkloi m Q’
Lot Ni (135)
Win, =0 on X,
¥, (0,) =0 in Q.

In addition, fznk and ;p,, i = 1,2 verify (15) and (107), respectively. This means that there exists a
positive constant C; = C(l|all\ws lIcli@\w> T> 0, T1,do) > 0 and C; = C(llall@\w llcllo\ws T> o1, o2,
N1, Ny, 19, 71, do) > 0 such that

2
2 ry < C1 (Z
1

1/2
i P ||y°||§2(9)> (136)
d

and for i = 1,2,

sz

Pinllzior) < Co | 1Y l20) + Z lzidll 2o : (137)
20D

i=1

We set

d
W(Q) = {p € L*((0, T); Hy (), 8—‘Z e L*((0, T>;H—1<sz))} : (138)

Then observing that (J,,) and (pi,), i = 1,2 are solutions of (129) and (130), respectively,
using (124), (136) and (137), we prove that there exists C = C(||allQ\w; lIcll@\w> T> @1, &2, N1, N2, 70,
71,dp) > 0 such that

P llw@ < C <|Iy Iz + Z lzidll 201, zld ) , (13%)
i=1 20}

pim Wi < C (IIy @) + Z lziall 201, z,d ) : (139b)
i=1 205

Thus, there exist i € L"), ¥ € LZ(OiT), and y, p;, i = 1,2 in W(Q) such that

}Aznk —~h weakly in L*(h), (140a)
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Dim — Vi weaklyin L*(O)), i=1,2, (140b)
Jm =3 weakly in W(Q), (140¢)
pinmg — pi weaklyin W(Q), i=1,2. (140d)

It follows from Aubin-Lions Lemma that
I — 7 strongly in L*((0, T) x (R \ w)), (141a)
Pim — pi stronglyin L*((0,T) x (2 \ w)), i=1,2. (141b)

Therefore, proceeding as for the convergence of (J¢, pi ) in Pages 22-24, we prove by passing to the
limit in systems (129)-(130) while using (140a)-(140d), (128a) and (141a)-(141b) that, (iz,j/,ﬁl,f)z)
satisfies the null controllability problem (86)-(87) and (7).

Applying (68) to (p,,,) and (\ilmk), i =1,2 and using (111), we deduce that

2
[ 10 dxar 4 3 [ 10 dxar < [ 15, axds
Q i=17Q ®

<c(x

i=1

2

1
gzi,d

02
5 T + ||}’ ”LZ(Q)> >
12(0%)

where C = C(|lallo\w» lcll@\ws> T To, 71, do) > 0. This implies that

P, = h weakly in L*(Q),
. . (142)
W, — U;  weakly in L*((0, T); Hy (2)).

Therefore proceeding as for the convergence of W;,, i = 1,2 and /5, pages 24-25 while passing to the
limit in (134) and (135), we prove using (128a) and (142) that / and U, i=1,2 satisfy (13) and (14),
respectively. Moreover, I satisfies (12).

(2) S is compact.

The operator is compact. To prove that we proceed exactly as in [25], using on the one hand the fact
thaty € W((0, T) x (2 \ w)) and on the other hand the compact embedding of W((0, T) x (2 \ w))
into L?((0, T); L*(Q2 \ w)).

(3) The range of S is bounded.

Let z € L?((0, T); L*( \ w)). Since S(z) = y(z) is solution of (122) with h satisfying (15) and
i, i = 1,2 verify (106) and (107), we prove that there exists

LZ(Oj))

C= C(”a”Q\a)’ ”C”Q\w’ T, a1, 2, Nl’ NZ)
70> T1>do) > 0 such that

It then follows from Proposition 3.2 that the operator S has a fixed point J. Since k= fo) + h, then
the proof of Theorem 1.2 is complete. [

1
—z
9 i,d

2 2

5 0
IVlz20,m2@\0)) = € <||)/ lr2(@) + Z Izidll 2oy + Z
i—1 i—1

3.3. Equilibria and quasi-equilibria

In this section, we will prove Proposition 1.1. As we said at the beginning of the Section 3, solving sys-
tem (1) with control k = f(9) + h is equivalent to solving system (115) with control /. By writing (1)
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in the form (115) is very important because, we bring the nonlinearity in a bounded sub-domain of
€2 according to hypothesis (3). So, in this section, we will consider the system (115).

Let us suppose that the nonlinearity f satisfies (2) and f € W2 (R), let h € L2(w?) be given and
let (¥1, 92) be the associated Nash quasi-equilibria. Let also wy, w, € Lz(OlT ). Our aim is to estimate
the second derivative D%]l (h;v1,v2) - (Wi, wy).

For any s € R, let us denote by j* the solution of the following system

NS

0 . . . . - .
Zz_ AV + )1\ = (1 +sw)lp, + 7le, +hl, inQ,

at
Fo on T, (143)
7(0,.) = ° in Q
and let us set ¥ := ¥*|;—o.
Now, we have
DiJi(hs 1 + swi, 2) - wa — DiJi (s 91, 92) - o

=sN; / wiw, dx dt + o / G — 2197 dxdt — oy / O —z14)zdxdt, (144)

or o1 or

where z° is the derivative of the state J* with respect to ¥, + swj in the direction w, i.e. the solution
to

0z° A .
— —AZ —I—f/()/s)lg\wzs =wilp, inQ,
9t 145
=0 on X, ( )
Z2°(0,.) =0 in Q.
We will also use the notation z := z°|s—o.
Let us introduce the adjoint of (145)
aj)s ~s /(NS ~S as .

T AP+ f P )a\wp’ =a1(° —z19)10, inQ,

=0 onY (146)

p(T,)=0 in Q

and let us use the notation p := p*|s—o.
Mutiplying the first equation of (145) by p* solution of (146) and integrating by part over Q, we
obtain

o1 / 0 —z20)lp,7 dxdt = f wap’lo, dxdt. (147)
Q Q

From (144) and (147), we have

DyJ1(h; V1 + swi, ¥2) - wp — DiJ1(B; 91, ¥2) - wy = sNy / L Wiw2 dxdt

O,

+/ (p° — pywa dxdt. (148)
of
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Notice that
J . A A A /(s /o As /o pS A S s
—a(ps =P =A@ =P+ [ ) —f D] 1) +f Dlaw@ —p) =a1(° — o,

and
d
—F =P —AF =D+ [ —fP]1law =swlo,.

Consequently, the following limits

N IV S U
n=lim-(p"—p) and ¢=lim -G —y)

exist and satisfy

9 N ) on N .
=57 = An+f Olawn + 1 Olawh = aiglo, inQ,
n=20 on X, (149)
n(l,)=0 in
and
d¢ ” ~ .
8_ - A¢ +f ()’)lﬁ\wd’ - W11(91 n Q’
t (150)
=0 on %,
$(0,) =0 in Q.

Thus, from (148) and (149)-(150), we deduce that

D%]l(il;fll,f/z)'(wl,WQ) I/ 7]W2dxdt+N1/ wiw, dx dt. (151)
of of
In particular, for w, = wy, we have
D%]l(]:l, V1, ¥2) - (W, wyp) = / ; nwy dxdt + N; / ; |W1|2 dxdt. (152)
ol Ol
Let us show that, for some constant C; > 0 independent of h, n, ¢, wy, one has
‘/@T nwidxdt] < G+ [1All2r) Wl 2oty (153)
1
Indeed, given w; € LZ(OIT) and since f € L°((0, T) x (2 \ w)), from the energy estimate, we have
(154)

2 2 2
”¢”L2(Q) + ”V¢”L2(Q) S C”WIHLZ(O;F)
Using systems (149) and (150), we have
L) /
nwidxdt = [ n| — — Ad +f (1w | dxdt
or Q at
an /o
= / ) <—— — An+f (y)lsz\w’?> dx dt
Q ot

- /Q b (~f' ) lorudh + ardlo,) drdr
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_ /Q ) la\old PP dxdt + /Q o1l¢ P10, dxdr. (155)

Applying Hélder inequality in the above expression and using the fact that f”” € L%((0, T) x (2 \
w)), we have

'/OT nwy dx dt

1

=< |lf//||Q\w||¢||i2r/((0,T);Lzs/(Q\w)) 1PN (o, ysts@ve)) + 011||¢||i2(@§), (156)

where " and s are the conjugate of r and s, respectively. To bound the right-hand side of this latter
inequality, the idea is to find r and s such that

PeL’((0,THL(Q\w), ¢ eL¥ ((0,T)L%(Q\w).

First, we have that ¢ € L2((0, T); H*(Q \ w)) N L>®°((0, T); H (2 \ w)). It is reasonable to look for
which values of d and b the following embedding holds:

L2((0, T); HA(Q\ @) N LP((0, T H' (R \ @) = LU0, T L°(Q\ w)). (157)
Using interpolation results, we deduce that
L_f 0<h<n (158)
- = -, <6 < 1.
d 2
From Sobolev embedding results, we have
HA(Q\ 0) < Liti(Q\ w), (1592)
HY(Q\ 0) < L3 (Q\ ). (159b)

Then, the space LP(Q \ w) is an intermediate space with respect to (159a) and (159b) if
1 n—4)0 n—2)(1-6
_ =49 =201 -6)

b 2n 2n

Taking d = 2" and b = 25/, it follows that appropriate values of r and s are

B d 4 s— dn
"Ta—2 M T haty

0<6<1. (160)

On the other hand, since h € L2 ("), 9 € Lz((’)iT) and y° € L*(R), we have that

5 € L0, T H'(Q\ ) N L¥((0, T L@\ ) = L0, TH PR\ w)). (161)

Using the interpolation argument, we obtain that

b _Zan .
dn —4
From parabolic regularity, we have
_ _ - ,,7;;_ - _ 2dn
¢ € LY, T); W*(Q\ w)) — L4 ((o, T); Ln25(Q\ a))) =4 ((o, T); Lin——4 (Q \ a))) )

(162)
Taking, d =r, it follows that ¢ € L4((o, T);Ld(”z_—ﬂg‘|r8 (2\w)) and, in order to have ¢ €
L7((0, T); L (2 \ w)), we need
dn - 2dn
2d+2) —dn—8) +8

>

which is true if and only if n < 12.
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Now, using (154) and the standard energy estimate of systems (143) for s = 0 and (146) fors = 0,
the term (155) becomes

/OT nwi dxdt| < CL(1+ 1Al 2(r); (163)

1

where C is a positive constant independent of N; and N>.
Combining (152) and (163), it follows that

DYa(hsn92) - wwn) = [Ny = Qo1+ Wl o) | 1w B o, ¥ w1 € L2OD).

In a similar way, we can prove that there exists a positive constant C, independent of N; and N, such
that

D%]z(il; V1, ¥2) - (wa, wp) > [Nz -G+ ||’A7||L2(wT))] ”WZ”iz(OIT)) Vw, e LH(OD).

Now, taking N; such that N; > C;(1 + ||l:t||Lz(wT)), then the functionals J;, i = 1,2 given by (4) are

convex and therefore the pair (91, ¥,) is a Nash equilibrium in the sense of (5)-(6). Since k= fO + h,
then the proof of Proposition 1.1 is complete.

4. Conclusion

In this paper, we proved that system (1) is Stackelberg—Nash null controllable in an unbounded
domain. The results have been obtained under the following assumptions: O; N @ = @, the set
(2 \ w) isbounded and O 4 = O, 4.

Let us mention that, in the linear case, the quadratic functionals are convex and then we look for
a Nash equilibrium. But, in the semi-linear case, we don’t have the convexity of those functionals in
general. That is the reason why we redefine the concept of equilibrium and then, we now look for a
Nash-quasi equilibrium. Next, we show that under certain conditions, there is a equivalence between
Nash equilibrium and quasi-Nash equilibrium.
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