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ABSTRACT
In this paper, we study the hierarchical control using the Stackelberg–Nash
strategy for a nonlinear parabolic equation in an unbounded domain. We
assume that we can act on the system by three controls hierarchically. Two
controls called followers that provide a Nash equilibrium for two cost func-
tional. The third control named leader is supposed to bring the state of
the system to rest at the final time. The results are achieved by means
of observability inequality of Carleman type that we established for the
adjoint systems and a fixed point theorem under the assumption that the
uncontrolled domain is bounded.

ARTICLE HISTORY
Received 2 August 2021
Accepted 29 September 2021

COMMUNICATED BY
G. M. N’Guerekata

KEYWORDS
Nonlinear parabolic
equation; Carleman
inequality; Nash equilibrium;
null controllability;
Stackelberg–Nash strategy

MATHEMATICS SUBJECT
CLASSIFICATIONS
49J20; 92D25; 93B05; 93C41

1. Introduction

Let� ⊂ R
n with n ≥ 1 be an unbounded connected open set with boundary� at least of class C2 uni-

formly. Letω,O1 andO2 be three nonempty subsets of� such thatOi ∩ ω = ∅. For the timeT> 0,we
set Q = (0,T)×�, ωT = (0,T)× ω, OT

1 = (0,T)× O1, OT
2 = (0,T)× O2 and � = (0,T)× �.

We consider the following nonlinear heat equation:⎧⎪⎨⎪⎩
∂y
∂t

−�y + f (y) = k1ω + v11O1 + v21O2 in Q,
y = 0 on�,
y(0, .) = y0 in�,

(1)

where y0 ∈ L2(�) and the controls k, v1 and v2 belong to L2(ωT), L2(OT
1 ) and L2(OT

2 ), respectively.
The function 1X denotes the characteristic function of the set X. We assume that the function f :
R → R satisfies the following assumptions:⎧⎨⎩

∃K > 0 : |f (u1)− f (u2)| ≤ K|u1 − u2|, ∀ u1, u2 ∈ R,
f (0) = 0,
f ∈ C1(R).

(2)

The first assumption of (2) means that f is a globally Lipschitz function. We also assume that the
unbounded sets� and ω are such that

� \ ω is bounded. (3)
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If y0 ∈ L2(�), k ∈ L2(ωT), vi ∈ L2(OT
i ), i = 1, 2 and f satisfies (2), then, we prove that the system (1)

admits a unique solution

y := y(k, v1, v2) ∈ L2((0,T);H1
0(�)) ∩ C([0,T]; L2(�)).

Let O1,d, O2,d ⊂ � be two open subsets, representing the observation domains. We define the
following functionals:

Ji(k; v1, v2) = αi

2
‖y(k, v1, v2)− zi,d‖2L2((0,T)×Oi,d)

+ Ni

2
‖vi‖2L2(OT

i )
, i = 1, 2, (4)

where αi and Ni are positive constants and zi,d ∈ L2((0,T)× Oi,d), i = 1, 2 are desired states.
In this paper, we analyze the null controllability of system (1) following hierarchic control tech-

nique. More precisely, we apply the Stackelberg–Nash method, which combines the optimization
technique of Stackelberg and noncooperative optimization technique of Nash. In order to explain
the methodology, we consider the two following problems:

Problem 1.1: Let ω,O1 andO2 be three nonempty subsets of�. Given k ∈ L2(ωT) and y0 ∈ L2(�),
find the controls v̂1 := v̂1(k) ∈ L2(OT

1 ) and v̂2 := v̂2(k) ∈ L2(OT
2 ) such that

J1(k; v̂1, v̂2) = min
v1∈L2(OT

1 )
J1(k; v1, v̂2), (5)

and

J2(k; v̂1, v̂2) = min
v2∈L2(OT

2 )
J2(k; v̂1, v2), (6)

where the functionals J1 and J2 are defined by (4).

Problem 1.2: Let ω,O1 andO2 be three nonempty unbounded subsets of� such thatOi ∩ ω = ∅.
Assume that (3) holds true. Let also (v̂1, v̂2) be the solution obtained for Problem 1.1. Given y0 ∈
L2(�), find a control k ∈ L2(ωT) such that if ŷ = y(t, x; k, v̂1(k), v̂2(k)) is solution of (1), then

ŷ(T, x) = y(T, x; k, v̂1(k), v̂2(k)) = 0, for x ∈ �. (7)

The motivation of the hierarchic control comes for example from environmental problem. The
system (1) can be used to describe the diffusion of a pollutant (e.g. the chemical product) named y in
a river �. Our goal here is to bring the concentration of this pollutant to zero at the final time T> 0
with appropriate control denoted k, trying meanwhile to keep the concentration of this pollutant to
a desired state inOi,d along the interval (0,T) with another controls named vi.

Remark 1.1: (1) Note that (5)–(6) are equivalent to

J1(k; v̂1, v̂2) ≤ J1(k; v1, v̂2), ∀ v1 ∈ L2(OT
1 ),

J2(k; v̂1, v̂2) ≤ J2(k; v̂1, v2), ∀ v2 ∈ L2(OT
2 ).

(2) Any pair (v̂1, v̂2) satisfying (5)–(6) is called a Nash equilibrium for Ji, i = 1, 2 given by (4) and
associated to k.

(3) If the functionals Ji, i = 1, 2 are convex, then (v̂1, v̂2) is a Nash equilibrium for Ji, i = 1, 2 if and
only if

∂J1
∂v1

(k; v̂1, v̂2)(v1, 0) = 0, ∀ v1 ∈ L2(OT
1 ), v̂i ∈ L2(OT

i ) (8)

and
∂J2
∂v2

(k; v̂1, v̂2)(0, v2) = 0, ∀ v2 ∈ L2(OT
1 ), v̂i ∈ L2(OT

i ). (9)
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Problem1.1 andProblem1.2 constitute a hierarchic control strategy formodel (1). The Stackelberg
leadership model is a multiple-objective optimization approach initiated by H. von Stackelberg in
[1]. This model is a strategic game in Economics in which two firms compete on the market with
the same product. The first to act must integrate the reaction of the other company in the choices it
makes in the amount of product that it decides to put on the market. There are some literature on
the Stackelberg strategy in the framework of partial differential equations. In [2], J. L. Lions used the
Stackelberg strategy for a linear parabolic equation with two controls named follower and leader. The
follower aimed to bring the state of the system not too far from a desired state, while the leader has
to steer the state at final time to a small neighborhood of a given state. Several other papers, see for
instance [3–8], applied the Stackelberg control strategy to solve a wide variety of problems. Recently,
in [9,10], the authors used the Stackelberg strategy to solve problems with incomplete or missing
data.

There are also in the literature some results about Stackelberg–Nash strategy for partial differen-
tial equations (PDEs). J. I. Diaz and J. L. Lions in [11,12] studied the Stackelberg–Nash strategies
for the approximate controllability of some parabolic equations with one leader and N followers. In
[13], F. Guillén-Gonzàlez et al. studied the approximate controllability of Stackelberg–Nash strategy
for Stokes equations with three controls. In [14], F. D Araruna et al. developed the first hierarchical
results within the exact controllability framework for a linear and semi-linear parabolic equations.
This strategy involved three controls: one leader and two followers. Each follower was supposed to
bring the state of the system to a desired state while the leader solved an exact controllability prob-
lem. This previous work motivated some authors and a lot of other results appeared, see for instance,
[15–20] to solve a variety of systems. Note that the above works on hierarchic control for partial
differential equations were considered in bounded domains. In [21], the authors proved the Stack-
elberg strategy in the sense of null controllability for a linear parabolic equation in an unbounded
domain. As far as we know, Stackelberg–Nash strategy has not yet been considered in an unbounded
domain in the sense of null controllability. However in [22], I. P. de Jesus et al. established Stackel-
berg–Nash strategy for the linear heat equation in an unbounded domain � = R

n. They spent the
case of approximate Stackelberg–Nash controllability.

In this paper we are concerned with Stackelberg–Nash null controllability problem in an
unbounded domain involving three controls: two followers and one leader. The first problem is a
Nash equilibrium which is a noncooperative optimization approach introduced in [23] by J. F. Nash.
Assuming that the leader has made his choice of policy, the objective of each follower in Problem 1.1
is tomove the state of the system not too far to his desired state. The leader solves a null controllability
problem in an unbounded domain.

Null controllability problem of parabolic equations in unbounded domains has been studied
by some authors. The first positive result was obtained by S. B. De Menezes et al. in [24]. The
authors showed the null controllability of a semilinear heat equation in an unbounded domain
with nonlinearities of the form f (y), the real function f being of class C1 and globally Lipschitz.
The results were achieved by means of a fixed-point theorem and under the assumption that the
uncontrolled domain is bounded. In [25], V. R. Cabanillas et al. extended the previous result for
a nonlinear parabolic equation with the nonlinearities of the form f (y,∇y). Under the assumption
that the uncontrolled region is bounded, M. G. Burgos et. al. [26] proved the null controllability of
a semi-linear heat equation with the nonlinearities of the form f (y,∇y) which grows slower than
|y| log3/2(1 + |y| + |∇y|)+ |∇y| log1/2(1 + |y| + |∇y|) at infinity.

Following the ideas of the above papers on the null controllability problem in unbounded domains,
we study the Stackelberg–Nash null controllability of a nonlinear heat equation in an unbounded
domain. Using the fact that the control which bring the system to rest at final time acts on an
open unbounded set such that the uncontrolled domain is bounded, we prove using appropriate
Carleman inequalities and fixed-point theorem that the system (1) is Stackelberg–Nash null con-
trollable. The novelty of this paper is that, we extend Stackelberg–Nash strategy to an unbounded
domain.
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1.1. Main results

To state the main contributions of this paper, we will have to impose the following assumptions:{ O1,d = O2,d : the common observability set will be denoted byOd,
Od ∩ ω = ∅. (10)

If f (y) = ay and we assume that a ∈ L∞(Q), then the system (1) is linear and we have the following
result.

Theorem 1.1: Suppose that (10) holds and that Ni, i = 1, 2 are large enough. Then, there exist two
positive real weight functions θ = θ(t) and
 = 
(t, x) (the definition of θ and
 will be given later)
such that for any zi,d ∈ L2(OT

d ) satisfying∫ T

0

∫
Od

θ−2|zi,d|2 dx dt < +∞, i = 1, 2, (11)

and for any y0 ∈ L2(�), there exists a unique control ĥ ∈ L2(ωT) and the corresponding Nash equilib-
rium (v̂1, v̂2) such that the solution of (1) satisfies (7). Moreover

ĥ = ρ̂ in ωT , (12)

where ρ̂ satisfies ⎧⎨⎩ −∂ρ̂
∂t

−�ρ̂ + aρ̂ =
(
α1�̂1 + α2�̂2

)
1Od in Q,

ρ̂ = 0 on�,
(13)

and �̂i, i = 1, 2 are solutions of⎧⎪⎪⎨⎪⎪⎩
∂�̂i

∂t
−��̂i + a�̂i = − 1

Ni
ρ̂i1Oi in Q,

�̂i = 0 on�,
�̂i(0, .) = 0 in�.

(14)

In addition, there exists a constant C = C(‖a‖L∞(Q),T, τ0, τ1, d0) > 0 such that

‖ĥ‖L2(ωT) ≤ C

( 2∑
i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥
L2(OT

d )

+ ‖y0‖L2(�)
)
. (15)

In the semi-linear case, we do not have the convexity of the functionals Ji, i = 1, 2 in general and
this motivates the following weaker definition.

Definition 1.1: Let k be given. The pair (v̂1, v̂2) is called a Nash quasi-equilibrium for the functionals
Ji, i = 1, 2 associated to k if the conditions (8) and (9) are satisfied.

The following result holds in the semi-linear case.

Theorem 1.2: Suppose that (2), (3) and (10) hold and f ∈ W1,∞(R). Then, there exist two positive
real weight functions θ = θ(t) and 
 = 
(t, x) such that if (11) holds, for any y0 ∈ L2(�), there
exists a control k̂ ∈ L2(ωT) and associated Nash quasi-equilibrium (v̂1, v̂2) such that the solution of (1)
satisfies (7).
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In the semi-linear case, there are some situationswhere the concepts ofNash equilibrium andNash
quasi-equilibrium are equivalents. An answer is given by the following result:

Proposition 1.1: Assume that f ∈ W2,∞(R) and zi,d ∈ L∞(OT
d ) for i = 1, 2. Suppose that y0 ∈ L2(�)

andN ≤ 12. Then, there exists a positive constant C independent of Ni, i = 1, 2 such that, if k ∈ L2(ωT)
and the Ni are large enough, the pair (v̂1, v̂2) is a Nash equilibrium for Ji, i = 1, 2 of (1).

Remark 1.2: • In this paper, we assume thatOi ∩ ω = ∅. This means that the domain of followers
control and the leader control are disjoints. Note that, in a realistic situation, the leader control
cannot decide what to do at the points in the domain of followers. Indeed, ifOi ∩ ω = ∅, once the
leader has chosen it strategy, the followers can modify the leader’s strategy at those points.

• The assumption (3) is very important. Indeed, themain difficulty with unbounded domains is that
we lose the compactness of the Sobolev embedding. So to overcome this difficulty, we will need
this hypothesis and then the nonlinear system is reduced to the case where the nonlinearity is now
supported in a bounded domain.

• The first assumption in (10) will be used in Section 2.2 to obtain the observability inequality of
Carleman type very important tool to solve controllability problem.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.1 correspond-
ing to the Stackelberg–Nash null controllability for a linear auxiliary system. In Section 3, we prove
Theorem 1.2 by using a fixed point argument. A conclusion is given in Section 4.

2. The linear case

The purpose of this section is to prove Theorem 1.1. We will do this in the next three subsections.
Now, we are concerned with the Stackelberg–Nash null controllability for the following linear system

⎧⎪⎨⎪⎩
∂y
∂t

−�y + ay = h1ω + v11O1 + v21O2 in Q,
y = 0 on�,
y(0, .) = y0 in�,

(16)

where h ∈ L2(ωT), v1 ∈ L2(OT
1 ), v2 ∈ L2(OT

2 ) and y0 ∈ L2(�). This means that we want to solve
Problem 1.1 and Problem 1.2 for system (16).

We assume in this section that the potential a = a(t, x) is in L∞(Q). From now on, ‖ · ‖∞ will
denote the norm in L∞(Q) and we will write C(X) to denote a positive constant whose value varies
from a line to line but depends on X.

Under the assumptions on the data, system (16) has a unique solution y(t, x) := y(h, v1, v2) =
y(t, x; h, v1, v2) ∈ L2((0,T);H1

0(�)) ∩ C([0,T]; L2(�)). Moreover, we have that there exists a positive
constant C = C(‖a‖∞,T) such that

‖y(T, .)‖2L2(�) + ‖y‖2L2((0,T);H1
0(�))

≤ C
(
‖y0‖2L2(�) + ‖h‖2L2(ωT)

)
+ C

(
‖v1‖2L2(OT

1 )
+ ‖v2‖2L2(OT

2 )

)
. (17)

Actually,

C(‖a‖∞,T) = e2(2‖a‖∞+1)T . (18)
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2.1. Problem 1.1 for system (16)

LetH be the Hilbert space defined by:

H = L2(OT
1 )× L2(OT

2 ), (19)

with the scalar product:

((f ,ϕ), (g,φ))H =
∫
OT

1

f g dx dt +
∫
OT

2

ϕ φ dx dt, for all (f ,ϕ), (g,φ) ∈ H. (20)

We are interested in Problem 1.1 for the linear system (16), that is, for any h ∈ L2(ωT), find the
controls v̂1 := v̂1(h) ∈ L2(OT

1 ) and v̂2 := v̂2(h) ∈ L2(OT
2 ) such that

J1(h; v̂1, v̂2) = min
v1∈L2(OT

1 )
J1(h; v1, v̂2) (21)

and

J2(h; v̂1, v̂2) = min
v2∈L2(OT

2 )
J2(h; v̂1, v2), (22)

where for i = 1, 2,

Ji(h; v1, v2) = αi

2
‖y(h, v1, v2)− zi,d‖2L2((0,T)×Oi,d)

+ Ni

2
‖vi‖2L2(OT

i )
, (23)

with αi,Ni > 0, zi,d ∈ L2((0,T)× Oi,d)), i = 1, 2 and y(h, v1, v2) being the solution of the linear
system (16).

Since the system (16) is linear, then the functionals Ji, i = 1, 2 given by (23) are convex. Then using
Remark 1.1, we have that (v̂1, v̂2) is solution of (21)–(22) if and only if

∂J1
∂v1

(h; v̂1, v̂2)(v1, 0) = 0, ∀ v1 ∈ L2(OT
1 ), v̂i ∈ L2(OT

i ) (24)

and
∂J2
∂v2

(h; v̂1, v̂2)(0, v2) = 0, ∀ v2 ∈ L2(OT
1 ), v̂i ∈ L2(OT

i ). (25)

2.1.1. Existence and uniqueness of a Nash equilibrium
We have the following result:

Proposition 2.1: Let h ∈ L2(ωT). Assume that

N1 > e2(2‖a‖∞+1)T α2

4
and N2 > e2(2‖a‖∞+1)T α1

4
. (26)

Then for any h ∈ L2(ωT), there exists a unique Nash equilibrium (v̂1, v̂2) ∈ H for J1 and J2 associated
to h. Moreover, there exists a constant C = C(‖a‖∞,T,α1,α2) such that

‖(v̂1, v̂2)‖H ≤ 1
γ
C

( 2∑
i=1

‖zi,d‖L2((0,T)×Oi,d) + ‖h‖L2(ωT) + ‖y0‖L2(�)
)
, (27)

where

γ = min
(
N1 − e2(1+2‖a‖∞)T α2

4
, N2 − e2(1+2‖a‖∞)T α1

4

)
> 0. (28)
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Proof: We proceed as in [12,14]. We define by Li the linear and continuous operator from L2(OT
i ) to

L2((0,T);H1
0(�)) such that Livi = zi where zi, i = 1, 2 is the solution to the following system⎧⎪⎨⎪⎩

∂zi
∂t

−�zi + azi = vi1Oi in Q,
zi = 0 on�,
zi(0, .) = 0 in�.

(29)

Then zi ∈ L2((0,T);H1
0(�)) is unique and there exists a constant C(‖a‖∞,T) > 0 such that

‖Livi‖L2((0,T);H1
0(�))

≤ C‖vi‖L2(OT
i )
. (30)

We have that (v̂1, v̂2) is a Nash equilibrium for (J1, J2) given by (23) if and only if conditions (24)–(25)
are satisfied. This means that the following relation holds true:

αi

∫
Q
(ŷ − zi,d)zi dx dt + Ni

∫
OT

i

v̂ivi dx dt = 0, for all vi ∈ L2(OT
i ), (31)

where ŷ = y(h, v̂1, v̂2) and zi, i = 1, 2 satisfies (29).
According to the definition of Li, any solution y to (16) can be decomposed as ŷ = L1v̂1 + L2v̂2 + l,

where l ∈ L2((0,T);H1
0(�)) satisfies⎧⎪⎨⎪⎩

∂ l
∂t

−�l + al = h1ω in Q,
l = 0 on�,
l(0, .) = y0 in�.

(32)

Let L∗
i be the adjoint of operator Li. Then L∗

i is a linear and continuous operator from
L2((0,T);H1

0(�)) to L
2(OT

i ). If we replace ŷ in (31) by L1v̂1 + L2v̂2 + l, then (31) becomes∫
OT

i

[
αiL∗

i (L1v̂1 + L2v̂2 − (zi,d − l))vi + Niv̂i
]
vi dx dt = 0, for all vi ∈ L2(OT

i ).

Thus, (v̂1, v̂2) is a Nash equilibrium for (J1, J2) given by (23) if and only if

αiL∗
i (L1v̂1 + L2v̂2)+ Niv̂i = αiL∗

i (zi,d − l) in L2(OT
i ), i = 1, 2. (33)

Now, we define the operator T : H → H by

T(v̂1, v̂2) = (
α1L∗

1(L1v̂1 + L2v̂2)+ N1v̂1,α2L∗
2(L1v̂1 + L2v̂2)+ N2v̂2

)
and we introduce the bilinear functional B : H × H → R defined by

B ((v̂1, v̂2), (v1, v2)) := (
T(v̂1, v̂2), (v1, v2)

)
H ,

where (., .)H denotes the scalar product onH given by (20).
Set

� = (
α1L∗

1(z1,d − l),α2L∗
2(z2,d − l)

)
.

Then it follows from (33) that the existence and uniqueness of the Nash equilibrium for (J1, J2) is
reduced to the existence and uniqueness of solution of the following problem: let h ∈ L2(ωT), find
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(v̂1, v̂2) ∈ H such that

B ((v̂1, v̂2), (v1, v2)) = (�, (v1, v2))H , for all (v1, v2) ∈ H. (34)

Observing on the one hand that (30) holds for vi = v̂i, and on the other hand that,

‖l‖L2((0,T);H1
0(�))

≤ C(‖a‖∞,T)
(‖h‖L2(ωT) + ‖y0‖L2(�)

)
, (35)

because l is solution of (32), we prove using Cauchy–Schwarz inequality that

∣∣B ((v̂1, v̂2), (v1, v2))∣∣ ≤ C‖(v̂1, v̂2)‖H‖(v1, v2)‖H, (36)

where C = C(‖a‖∞,T,α1,α2,N1,N2) > 0.
Using again (30) and Young’s inequality, we prove that if N1 > e2(1+2‖a‖∞)T α2

4 and N2 >

e2(1+2‖a‖∞)T α1
4 , then B is coercive, that is,

|B ((v1, v2), (v1, v2))| ≥ γ ‖(v1, v2)‖2H, (37)

where γ is defined by (28).
Now using Cauchy–Schwarz inequality, (30) and (35), we have that

(�, (v1, v2))H ≤ C‖(v1, v2)‖H, (38)

where C = C(‖a‖∞,T,α1,α2)(
∑2

i=1 ‖zi,d‖2L2((0,T)×Oi,d)
+ ‖h‖2L2(ωT)

+ ‖y0‖2L2(�))1/2 > 0.
Finally, (36), (37) and (38) proves that, the bilinear functionalB is continuous onH × H, coercive

on H and that the linear functional (v1, v2) �→ (�, (v1, v2))H is continuous on H. Therefore, the
Lax–Milgram’s theorem allows us to say that there exists a unique Nash equilibrium (v̂1, v̂2) ∈ H.

Now taking (v1, v2) = (v̂1, v̂2) in (34) and using (37) and (38), we deduce that

‖(v̂1, v̂2)‖H ≤ 1
γ
C

( 2∑
i=1

‖zi,d‖2L2((0,T)×Oi,d)
+ ‖h‖2L2(ωT)

+ ‖y0‖2L2(�)
)1/2

,

where C = C(‖a‖∞,T,α1,α2) > 0 and γ is given by (28). Hence, we obtain (27). �

2.1.2. Optimality system for a Nash equilibrium
In order to give the optimality system that characterizes the Nash equilibrium (v̂1, v̂2) for the cost
functionals (J1, J2), we interpret relation (31). So, we consider the adjoint state p̂i, i = 1, 2 solution of

⎧⎪⎨⎪⎩
−∂ p̂i
∂t

−�p̂i + ap̂i = αi(ŷ − zi,d)1Oi,d in Q,
p̂i = 0 on�,
p̂i(T, .) = 0 in�.

(39)

Since αi(ŷ − zi,d)1Oi,d ∈ L2(Q), we deduce that the system (39) has a unique solution in p̂i ∈
L2((0,T);H1

0(�)) ∩ C([0,T]; L2(�)), i = 1, 2. Thus, if we multiply (29) by p̂i, that is the solution
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of (39) and integrate by parts over Q, we obtain that

αi

∫
Q
zi(ŷ − zi,d)1Oi,d dx dt =

∫
OT

i

vip̂i dx dt = 0, for every vi ∈ L2(OT
i ).

This, together with (31) gives∫
OT

i

(p̂i + Niv̂i)vi dx dt = 0, for every vi ∈ L2(OT
i ).

This means that,

v̂i = − 1
Ni

p̂i inOT
i , i = 1, 2.

We have proved the following results.

Proposition 2.2: Let h ∈ L2(ωT). Assume that (26) holds true. Then, the pair (v̂1, v̂2) is a Nash
equilibrium for (21)–(22) if and only if

v̂i = − 1
Ni

p̂i inOT
i , i = 1, 2, (40)

where (ŷ, p̂i) is solution of the following systems⎧⎪⎪⎨⎪⎪⎩
∂ ŷ
∂t

−�ŷ + aŷ = h1ω − 1
N1

p̂11O1 − 1
N2

p̂21O2 in Q,

ŷ = 0 on�,
ŷ(0, .) = y0 in�

(41)

and ⎧⎪⎨⎪⎩
−∂ p̂i
∂t

−�p̂i + ap̂i = αi(ŷ − zi,d)1Oi,d in Q,
p̂i = 0 on�,
p̂i(T, .) = 0 in�.

(42)

2.2. Carleman inequalities

In this subsection, we establish the inequality of observability useful for solving the null controllability
of the cascade linear system (41)–(42).We assume thatω1 is an unbounded set withω1 ⊂ ω and such
that

� \ ω1 is bounded. (43)

Remark 2.1: Note that with (43), we have that assumption (3) holds true.

Since the second assumption of (10) holds, that means Od ∩ ω = ∅, then there exist an open set
ω0 such that

ω0 ⊂ ω1 ⊂ Od ∩ ω with d0 = dist (ω0,� \ ω̄1) > 0, (44)

and a function ψ such that⎧⎪⎨⎪⎩
ψ ∈ C2(�̄), ψ ≥ 0 in�,
|∇ψ | ≥ τ0 > 0 in �̄ \ ω0,
∂ψ

∂ν
≤ 0 on ∂�,

∑
|β|≤2 |Dβψ | ≤ τ1 in�,

(45)

where τ0 and τ1 are two positive constants. For the construction of such a functionψ in the case when
the domain� is unbounded, we refer to [26].
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Let λ be a positive real number. For any (t, x) ∈ Q, we define the functions

ϕ(t, x) = eλ(ψ(x)+m1)

t(T − t)
, (46)

η(t, x) = eλ(‖ψ‖L∞(�)+m2) − eλ(ψ(x)+m1)

t(T − t)
, (47)

withm2 > m1. Then, there exists a positive constant C(T) such that,∣∣∣∣∂η∂t
∣∣∣∣ ≤ C(T)ϕ2, (48a)∣∣∣∣∂ϕ∂t
∣∣∣∣ ≤ C(T)ϕ2. (48b)

For any F0 ∈ L2(Q) and z0 ∈ L2(�), we consider the following system:⎧⎪⎨⎪⎩
−∂z
∂t

−�z = F0 in Q,
z = 0 on�,
z(T, ·) = z0 in�.

(49)

We have the following result which give a Carleman inequality for solution to the system (49).

Proposition 2.3 ([26]): Suppose that assumptions (44)–(45) hold true. Let ϕ and η be defined by
(46) and (47), respectively. Then, there exist positive constants σ1(τ0, τ1, d0) ≥ 1, λ1(τ0, τ1, d0) ≥ 1 and
C(τ0, τ1, d0) > 0 such that for all λ ≥ λ1, s ≥ s1 = σ1(T + T2), and for any solution of (49) denoted
by z, we have

sλ2
∫
Q
e−2sηϕ|∇z|2 dx dt + s3λ4

∫
Q
e−2sηϕ3|z|2 dx dt

≤ C(τ0, τ1, d0)
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|z|2 dx dt +
∫
Q
e−2sη|F0|2 dx dt

)
. (50)

Now, consider the following system:⎧⎪⎨⎪⎩
−∂z
∂t

−�z + az = f in Q,
z = 0 on�,
z(T, ·) = z0 in�,

(51)

with f ∈ L2(Q) and z0 ∈ L2(�). Then, we have the following result for (51).

Proposition 2.4: Under the assumptions of Proposition 2.3, there exist positive constants σ1(τ0, τ1, d0)
≥ 1, λ1(τ0, τ1, d0) ≥ 1, s2 = max(s1, 4C(τ0, τ1, d0)‖a‖2∞) ≥ 1 and C = C(τ0, τ1, d0) > 0 such that for
all λ ≥ λ1, s ≥ s2, and for any z solution of (51), we have

sλ2
∫
Q
e−2sηϕ|∇z|2 dx dt + s3λ4

∫
Q
e−2sηϕ3|z|2 dx dt

≤ C
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|z|2 dx dt +
∫
Q
e−2sη|f |2 dx dt

)
. (52)
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Proof: We write system (51) as⎧⎪⎨⎪⎩
−∂z
∂t

−�z = (−az + f ) in Q,
z = 0 on�,
z(T, ·) = z0 in�.

Hence, z verifies (49) with F0 = −az + f ∈ L2(Q). Thus, we can apply Proposition 2.3 to z and we
deduce that there exists C = C(τ0, τ1, d0) > 0 such that

sλ2
∫
Q
e−2sηϕ|∇z|2 dx dt + s3λ4

∫
Q
e−2sηϕ3|z|2 dx dt

≤ C
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|z|2 dx dt +
∫
Q
e−2sη|f |2 dx dt

)
+ ‖a‖2∞C

(∫
Q
e−2sη|z|2 dx dt + s2λ2

∫
Q
e−2sηϕ2|z|2 dx dt

)
.

Observing that s, λ > 1 and ϕ−1 ∈ L∞(Q), it follows from the latter inequality that, there exists C =
C(τ0, τ1, d0) > 0 such that

sλ2
∫
Q
e−2sηϕ|∇z|2 dx dt + s3λ4

∫
Q
e−2sηϕ3|z|2 dx dt

≤ C
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|z|2 dx dt +
∫
Q
e−2sη|f |2 dx dt

)
+ ‖a‖2∞C

(
2s2λ4

∫
Q
e−2sηϕ3|z|2 dx dt

)
.

Choosing s ≥ s2 = max(s1, 4C(τ0, τ1, d0)‖a‖2∞) in this latter inequality, we obtain (52). �

Remark 2.2: If we make a change of variable t for T−t in (51), we have⎧⎪⎨⎪⎩
∂ z̃
∂t

−�z̃ + az̃ = f̃ in Q,
z̃ = 0 on�,
z̃(0, ·) = z0 in�,

(53)

where z̃(t, x) = z(T − t, x) and f̃ (t, x) = f (T − t, x). Then, the global Carleman inequality (52) is
also valid for any z̃ solution of (53).

From now on, we will adopt for a suitable function z, the following notation

K(z) = sλ2
∫
Q
e−2sηϕ|∇z|2 dx dt + s3λ4

∫
Q
e−2sηϕ3|z|2 dx dt. (54)

For ρT ∈ L2(�), we consider following systems:⎧⎪⎨⎪⎩
−∂ρ
∂t

−�ρ + aρ = α1�11O1,d + α2�21O2,d in Q,
ρ = 0 on�,
ρ(T, ·) = ρT in�,

(55)
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and for i = 1, 2, ⎧⎪⎨⎪⎩
∂�i

∂t
−��i + a�i = − 1

Ni
ρ1Oi in Q,

�i = 0 on�,
�i(0, .) = 0 in�.

(56)

Since the first assumption of (10) holds, if we set φ = α1�1 + α2�2, then in view of (56), φ is solution
to ⎧⎪⎨⎪⎩

∂φ

∂t
−�φ + aφ = − α1

N1
ρ1O1 − α2

N2
ρ1O2 in Q,

φ = 0 on�,
φ(0, .) = 0 in�,

(57)

and (55) can be rewritten as ⎧⎪⎨⎪⎩
−∂ρ
∂t

−�ρ + aρ = φ1Od in Q,
ρ = 0 on�,
ρ(T, ·) = ρT in�.

(58)

In the following result, we present the Carleman inequality for solutions to systems (57)–(58).

Proposition 2.5: Assume that the Ni, (i = 1, 2) are large enough. Then, under the assumptions of
Proposition 2.4, there exist positive constants s3 ≥ 1, λ2 ≥ 1 and C = C(τ0, τ1, d0,T) > 0 such that for
all λ ≥ λ2, s ≥ s3, the following estimate holds true for any solution (φ, ρ) of (57)–(58):

K(ρ)+ K(φ) ≤ Cs7λ9
∫
ωT

e−2sηϕ7|ρ|2 dx dt. (59)

Here, s3 = max(s2, 2C(τ0, τ1, d0,N1,N2,α1,α2)) and λ2 = max(λ1, 2C(τ0, τ1, d0)) with λ1 and s2
defined as in Proposition 2.4.

Proof: We proceed in two steps.
Step 1. We prove that there exist s3 ≥ 1, λ2 ≥ 1 and C = C(τ0, τ1, d0) > 0 such that for any s ≥ s3

and λ ≥ λ2,

K(ρ)+ K(φ) ≤ C
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3
(|ρ|2 + |φ|2) dx dt) . (60)

Applying (52) to the solution ρ of (58) and to the solution φ of (57) because of Remark 2.2, then using
the notation (54), we, respectively, have that there exists C = C(τ0, τ1, d0) > 0 such that

K(ρ) ≤ C(τ0, τ1, d0)
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|ρ|2 dx dt +
∫
Q
e−2sη|φ|2 dx dt

)
≤ C(τ0, τ1, d0)

(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|ρ|2 dx dt +
∫
Q
s3λ3ϕ3e−2sη|φ|2 dx dt

)
and

K(φ) ≤ C(τ0, τ1, d0)s3λ4
∫ T

0

∫
ω1

e−2sηϕ3|φ|2 dx dt

+ C(τ0, τ1, d0)
∫
Q
e−2sη

∣∣∣∣ α1N1
ρ1O1 + α2

N2
ρ1O2

∣∣∣∣2 dx dt
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≤ C(τ0, τ1, d0)s3λ4
∫ T

0

∫
ω1

e−2sηϕ3|φ|2 dx dt

+ C(τ0, τ1, d0,N1,N2,α1,α2)
∫
Q
s2λ4ϕ3e−2sη|ρ|2 dx dt,

because s, λ > 1 and ϕ−1 ∈ L∞(Q). Consequently,

K(ρ)+ K(φ) ≤ C(τ0, τ1, d0)
(
s3λ4

∫ T

0

∫
ω1

e−2sηϕ3|ρ|2 dx dt +
∫
Q
s3λ3ϕ3e−2sη|φ|2 dx dt

)
+ C(τ0, τ1, d0)s3λ3

∫
Q
e−2sηϕ3|φ|2 dx dt

+ C(τ0, τ1, d0,N1,N2,α1,α2)
∫
Q
s2λ4ϕ3e−2sη|ρ|2 dx dt.

We set s3 = max(s2, 2C(τ0, τ1, d0,N1,N2,α1,α2)) and λ2 = max(λ1, 2C(τ0, τ1, d0)). Then if we
choose in this latter inequality, s ≥ s3 and λ ≥ λ2, then (60) holds true.

Step 2. Now, we want to eliminate the local term corresponding to φ on the right-hand side of the
estimate (60).

So, let ω2 be a nonempty open set such that ω1 ⊂ ω2 ⊂ Od ∩ ω. Introduce as in [27] the cut off
function ξ ∈ C∞

0 (�) such that

0 ≤ ξ ≤ 1, ξ = 1 in ω1, ξ = 0 in� \ ω2, (61a)

�ξ

ξ 1/2
∈ L∞(ω2),

∇ξ
ξ 1/2

∈ [L∞(ω2)]n. (61b)

Set u = s3λ4ϕ3e−2sη. Then u(T) = u(0) = 0 and we have

∂u
∂t

= u
[
3ϕ−1 ∂ϕ

∂t
− 2s

∂η

∂t

]
, (62a)

∇(uξ) = u [(3λ+ 2sλϕ)ξ∇ψ + ∇ξ ] (62b)

and

�(uξ) = uξ(14sλ2ϕ + 4s2λ2ϕ2 + 9λ2)|∇ψ |2 + uξ�ψ(3λ+ 2sλϕ)

+ 2u(3λ+ 2sλϕ)∇ψ .∇ξ + u�ξ . (63)

If we multiply the first equation of (58) by uξφ and integrate by parts over Q, we obtain

− α1

N1

∫
Q
uξ |ρ|21O1 dx dt − α2

N2

∫
Q
uξ |ρ|21O2 dx dt +

∫
Q
ρξφ

∂u
∂t

dx dt

− 2
∫
Q
ρ∇φ.∇(uξ) dx dt −

∫
Q
ρφ�(uξ) dx dt =

∫
Q
uξ |φ|21Od dx dt.



14 L. L. DJOMEGNE NJOUKOUE

If we set

J1 = − α1

N1

∫
Q
uξ |ρ|21O1 dx dt − α2

N2

∫
Q
uξ |ρ|21O2 dx dt, J2 =

∫
Q
ρξφ

∂u
∂t

dx dt,

J3 = −2
∫
Q
ρ∇φ.∇(uξ) dx dt, J4 = −

∫
Q
ρφ�(uξ) dx dt,

the formula (64) can be rewritten as

J1 + J2 + J3 + J4 =
∫
Q
u|φ|21Od dx dt. (64)

Let us estimate Ji, i = 1, . . . , 4. We have

J1 = − α1

N1

∫
Q
uξ |ρ|21O1 dx dt − α2

N2

∫
Q
uξ |ρ|21O2 dx dt

≤
(
α1

N1
+ α2

N2

)∫
Q
s3λ4ϕ3e−2sη|ρ|2 dx dt.

Using the Young inequality, (48a), (61a), (62a) and (63), we obtain that

J2 =
∫
Q
ρξφ

∂u
∂t

dx dt

≤ γ1

2

∫
Q
ξu|φ|2 dx dt + 1

2γ1

∫
Q
ξu|ρ|2

[
18ϕ−2

(
∂ϕ

∂t

)2
+ 8s2

(
∂η

∂t

)2
]
dx dt

≤ γ1

2

∫ T

0

∫
ω1

u|φ|2 dx dt + C(T)
∫ T

0

∫
ω2

s5λ4ϕ7e−2sη|ρ|2 dx dt,

for some γ1 > 0.

J3 = −2
∫
Q
ρ∇φ.∇(uξ) dx dt

= −2
∫
Q
ρξu(3λ+ 2sλϕ)∇ψ .∇φ dx dt − 2

∫
Q
ρu∇φ.∇ξ dx dt

≤ 1
2

∫
Q
sλϕe−2sη|∇φ|2 dx dt + C(τ1)

∫ T

0

∫
ω2

s7λ9ϕ7e−2sη|ρ|2 dx dt.

J4 = −
∫
Q
ρφ�(uξ) dx dt,

= −
∫
Q
ρuξφ(14sλ2ϕ + 4s2λ2ϕ2 + 9λ2)|∇ψ |2 dx dt −

∫
Q
ρuξφ�ψ(3λ+ 2sλϕ) dx dt

− 2
∫
Q
ρuφ(3λ+ 2sλϕ)∇ψ .∇ξ dx dt −

∫
Q
ρuφ�ξ dx dt,
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which after some calculations gives

J4 ≤
5∑

i=2

γi

2

∫ T

0

∫
ω1

u|φ|2 dx dt + C(τ1)
∫ T

0

∫
ω2

s7λ8ϕ7e−2sη|ρ|2 dx dt,

for some γi > 0, i = 2, . . . , 5. Finally, choosing the γi such that
∑5

i=1
γi
2 = 1

2 , it follows from (64)
that ∫ T

0

∫
ω1

s3λ4ϕ3e−2sη|φ|2 dx dt ≤
∫
Q
sλϕe−2sη|∇φ|2 dx dt

+ C (τ1,T)
∫ T

0

∫
ω2

s7λ9ϕ7e−2sη|ρ|2 dx dt

+
(
α1

N1
+ α2

N2

)∫
Q
s3λ4ϕ3e−2sη|ρ|2 dx dt. (65)

Combining (60) with (65), we deduce that

K(ρ)+ K(φ) ≤ C(τ0, τ1, d0)
∫
Q
sλϕe−2sη|∇φ|2 dx dt

+ C(τ0, τ1, d0,T)
∫ T

0

∫
ω2

s7λ9ϕ7e−2sη|ρ|2 dx dt

+
(
α1

N1
+ α2

N2

)
C(τ0, τ1, d0)

∫
Q
s3λ4ϕ3e−2sη|ρ|2 dx dt.

Taking in this latter inequality λ ≥ λ2 = max(λ1, 2C(τ0, τ1, d0)), we get

K(ρ)+ K(φ) ≤ C(τ0, τ1, d0,T)
∫ T

0

∫
ω2

s7λ9ϕ7e−2sη|ρ|2 dx dt

+
(
α1

N1
+ α2

N2

)
C(τ0, τ1, d0)

∫
Q
s3λ4ϕ3e−2sη|ρ|2 dx dt.

TakingNi, (i = 1, 2) large enough, we can absorb the last term of the latter inequality in the left-hand
side. Using the fact that ω2 ⊂ ω, we deduce (59). �

Now, we are going to establish the observability inequality of Carleman in the sense that the weight
functions do not vanish at t = 0. We define the functions ϕ̃ and η̃ as follows:

ϕ̃(t, x) =

⎧⎪⎪⎨⎪⎪⎩
ϕ

(
T
2
, x
)

if t ∈
[
0,
T
2

]
,

ϕ(t, x) if t ∈
[
T
2
,T
] (66)

and

η̃(t, x) =

⎧⎪⎪⎨⎪⎪⎩
η

(
T
2
, x
)

if t ∈
[
0,
T
2

]
,

η(t, x) if t ∈
[
T
2
,T
]
.

(67)

Then in view of the definition of ϕ and η given by (46) and (47), the functions ϕ̃(., x) and η̃(., x) are
positive functions of class C1 on [0,T[. From now on, we fix λ = λ2 and s = s3.
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We have the following result.

Proposition 2.6: Under the assumptions of Proposition 2.5, there exist positive constants s3 ≥ 1 and
λ2 ≥ 1 and two positive weight functions θ = θ(t) and
 = 
(t, x) such that for any solution (ρ,�i)
of (55)–(56), we have

‖ρ(0, ·)‖2L2(�) +
∫
Q

1

 2 |ρ|2 dx dt +

2∑
i=1

∫
Q
θ2|�i|2 dx dt ≤ C

∫
ωT

|ρ|2 dx dt, (68)

for some C = C(‖a‖∞, τ0, τ1, d0,T) > 0.

Proof: We proceed in two steps.
Step 1. We prove that there exist a constant C = C(‖a‖∞, τ0, τ1, d0) > 0 and a positive weight

function
 such that

‖ρ(0, ·)‖2L2(�) +
∫
Q

1

 2 |ρ|2 dx dt ≤ C

∫
ωT

|ρ|2 dx dt. (69)

Let us introduce a function β ∈ C1([0,T]) such that

0 ≤ β ≤ 1, β(t) = 1 for t ∈ [0,T/2], β(t) = 0 for t ∈ [3T/4,T], |β ′(t)| ≤ C/T. (70)

For any (t, x) ∈ Q, we set

ζ(t, x) = β(t)e−r(T−t)ρ(t, x),

where r> 0. Then in view (58), the function ζ is a solution of⎧⎪⎨⎪⎩
−∂ζ
∂t

−�ζ + aζ + rζ = βe−r(T−t)φ1Od − β ′e−r(T−t)ρ in Q,
ζ = 0 on�,
ζ(T, .) = 0 in�.

(71)

If we multiply the first equation in (71) by ζ and integrate by parts over Q, we get

1
2
‖ζ(0, ·)‖2L2(�) + 1

2
‖∇ζ‖2L2(Q) + r‖ζ‖2L2(Q)

≤ 1
2
(2‖a‖∞ + 2) ‖ζ‖2L2(Q)

+ 1
2

∫ 3T/4

0

∫
�

|φ|2 dx dt + 1
2

∫ 3T/4

T/2

∫
�

|ρ|2 dx dt.

Hence, choosing in this latter inequality r = ‖a‖∞ + 3
2 and using the definition of ζ , we obtain that∫

�

|ρ(0, x)|2 dx +
∫ T/2

0

∫
�

|∇ρ|2 dx dt +
∫ T/2

0

∫
�

|ρ|2 dx dt

≤ C (‖a‖∞,T)
(∫ 3T/4

0

∫
�

|φ|2 dx dt +
∫ 3T/4

T/2

∫
�

|ρ|2 dx dt
)
.

Now, using the fact that the functions ϕ̃ and η̃ defined by (66) and (67), respectively, have lower
bounds for (t, x) ∈ [0,T/2] ×�, we get∫

�

|ρ(0, x)|2 dx + K̃[0,T/2](ρ)
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≤ C (‖a‖∞,T)
(∫ 3T/4

0

∫
�

|φ|2 dx dt +
∫ 3T/4

T/2

∫
�

|ρ|2 dx dt
)
, (72)

and

K̃[a,b](z) =
∫ b

a

∫
�

e−2s3η̃ϕ̃|∇z|2 dx dt +
∫ b

a

∫
�

e−2s3η̃ϕ̃3|z|2 dx dt. (73)

Adding the term K̃[0,T/2](φ) to both sides of inequality (72), we obtain∫
�

|ρ(0, x)|2 dx + K̃[0,T/2](ρ)+ K̃[0,T/2](φ)

≤ C (‖a‖∞,T)
(∫ 3T/4

0

∫
�

|φ|2 dx dt +
∫ 3T/4

T/2

∫
�

|ρ|2 dx dt
)

+ K̃[0,T/2](φ). (74)

In order to eliminate the term K̃[0,T/2](φ) on the right-hand side of (74), we use the standard energy
estimates of system (56) and we obtain∫ T/2

0

∫
�

|∇φ|2 dx dt +
∫ T/2

0

∫
�

|φ|2 dx dt ≤ C
(
α21
2N2

1
+ α22

2N2
2

)∫ T/2

0

∫
�

|ρ|2 dx dt,

where C = C(‖a‖∞,T) > 0 is independent of Ni, (i = 1, 2). Since the functions ϕ̃ and η̃ have lower
and upper bounds for (t, x) ∈ [0,T/2] ×�, from the previous inequality we obtain

K̃[0,T/2](φ) ≤ C (‖a‖∞,T)
(
α21
2N2

1
+ α22

2N2
2

)∫ T/2

0

∫
�

e−2s3η̃ϕ̃3 |ρ|2 dx dt. (75)

Replacing (75) in (74) and taking Ni, (i = 1, 2) large enough, we obtain∫
�

|ρ(0, x)|2 dx + K̃[0,T/2](ρ)+ K̃[0,T/2](φ) ≤ C (‖a‖∞,T)
(∫ 3T/4

T/2

∫
�

(|ρ|2 + |φ|2) dx dt
)
.

(76)
Since the functions ϕ and η defined by (46) and (47), respectively, have the upper bound for (t, x) ∈
[T/2, 3T/4] ×�, using (59), we obtain∫

�

|ρ(0, x)|2 dx + K̃[0,T/2](ρ)+ K̃[0,T/2](φ) ≤ C (‖a‖∞,T) (K(ρ)+ K(φ))

≤ C(‖a‖∞,T, τ0, τ1, d0)
∫
ωT

e−2s3ηϕ7|ρ|2 dx dt. (77)

On the other hand, since η = η̃ and ϕ = ϕ̃ in [T/2,T] ×�, using again estimate (59), we obtain

K̃[T/2,T](ρ)+ K̃[T/2,T](φ) = K(ρ)+ K(φ)

≤ C(‖a‖∞,T, τ0, τ1, d0)
∫
ωT

e−2s3ηϕ7|ρ|2 dx dt. (78)

Adding (77) and (78) and using the fact that e−2s3ηϕ7 ∈ L∞(Q), we deduce that

‖ρ(0, ·)‖2L2(�) + K̃[0,T](ρ)+ K̃[0,T](φ) ≤ C(‖a‖∞,T, τ0, τ1, d0)
∫
ωT

|ρ|2 dx dt. (79)

Using the definition of K̃[a,b] given by (73), we can rewrite the inequality (79) as

‖ρ(0, ·)‖2L2(�) +
∫ T

0

∫
�

e−2s3η̃ϕ̃3|ρ|2 dx dt +
∫ T

0

∫
�

e−2s3η̃ϕ̃3|φ|2 dx dt ≤ C
∫
ωT

|ρ|2 dx dt, (80)

where C = C(‖a‖∞,T, τ0, τ1, d0) > 0.
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We set
1

 2 = e−2s3η̃ϕ̃3. (81)

Then, from the definition of ϕ̃ and η̃ given, respectively, by (66) and (67), we have that 1

 2 ∈ L∞(Q).

Using (80) and (81), we deduce (69).
Step 2. We prove that there exist a constant C = C(‖a‖∞, τ0, τ1, d0) > 0 and a positive weight

function θ such that
2∑

i=1

∫
Q
θ2|�i|2 dx dt ≤ C

∫
ωT

|ρ|2 dx dt. (82)

We set

η0(t) = max
x∈�

η̃(t, x). (83)

Then, η0 is also a positive function of class C1 on [0,T[. We define the weight function θ by:

θ(t) = e−s3η0(t) ∈ L∞(0,T). (84)

Multiplying the first equation of (56) by θ2�i, i = 1, 2 and integrating by parts over�, we obtain that

1
2
d
dt

∫
�

θ2|�i|2 dx +
∫
�

θ2|∇�i|2 dx

= −
∫
�

θ2 a |�i|2 dx − 1
Ni

∫
Oi

θ2ρ�i dx − s3
∫
�

θ2
∂η0

∂t
|�i|2 dx.

Hence, using the fact that ∂η0/∂t is a positive function on [0,T), we deduce that

1
2
d
dt

∫
�

θ2|�i|2 dx + 1
2

∫
�

θ2|∇�i|2 dx ≤
(

‖a‖∞ + 1
2

)∫
�

θ2|�i|2 dx + 1
2N2

i

∫
Oi

θ2|ρ|2 dx.

Consequently,

d
dt

(∫
�

|θ�i|2 dx
)

≤ (2‖a‖∞ + 1)
∫
�

|θ�i|2 dx + 1
N2
i

∫
Oi

θ2|ρ|2 dx.

Using Gronwall’s Lemma and the fact that�i(x, 0) = 0 for x ∈ �, we obtain that∫
�

θ2|�i(x, t)|2 dx ≤ Ci

∫
Q
θ2|ρ|2 dx dt, for all t ∈ [0,T], (85)

where Ci = C(‖a‖∞,T,Ni) = e(2‖a‖∞+1)T 1
N2
i
> 0, i = 1, 2.

In view of (83), (84) and the fact that ϕ̃−1 ∈ L∞(Q), we have that∫
Q
θ2|ρ(x, t)|2 dx dt ≤

∫
Q
e−2s3η̃ϕ̃3|ρ(x, t)|2 dx dt,

which combining with (85) and (69) yields∫
Q
θ2|�i(x, t)|2 dx dt ≤ C

∫
ωT

|ρ(x, t)|2 dx dt, i = 1, 2,

where C = C(‖a‖∞,T,N1,N2, τ0, τ1, d0) > 0. Hence we deduce (82).
Finally, adding estimates (69) and (82), we obtain (68). �
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2.3. Null controllability (Problem 1.2 for system (16))

In this subsection, we will achieve the proof of Theorem 1.1. We look for a control h ∈ L2(ωT) such
that the solution (ŷ, p̂i) of⎧⎪⎪⎨⎪⎪⎩

∂ ŷ
∂t

−�ŷ + aŷ = h1ω − 1
N1

p̂11O1 − 1
N2

p̂21O2 in Q,

ŷ = 0 on�,
ŷ(0, .) = y0 in�

(86)

and ⎧⎪⎨⎪⎩
−∂ p̂i
∂t

−�p̂i + ap̂i = αi(ŷ − zi,d)1Oi,d in Q,
p̂i = 0 on�,
p̂i(T, .) = 0 in�,

(87)

satisfies (7).
To prove this null controllability problem, we proceed in three steps using a penalization method.
Step 1. For any ε > 0, we define the cost function:

Jε(h) = 1
2ε

‖ŷ(T, .; h)‖L2(�) + 1
2
‖h‖L2(ωT). (88)

Then we consider the optimal control problem:

min
h∈L2(ωT)

Jε(h). (89)

Using minimizing sequences, we prove that there exists a unique solution ĥε ∈ L2(ωT) to (89). Using
Euler–Lagrange first-order optimality condition that characterizes the solution ĥε , we can prove that

ĥε = ρ̂ε in ωT . (90)

where ρ̂ε is solution of ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∂ρ̂ε
∂t

−�ρ̂ε + aρ̂ε =
2∑

i=1
αi�̂iε1Od in Q,

ρ̂ε = 0 on�,

ρ̂ε(T, .) = −1
ε
ŷε(T, .) in�,

(91)

with (�̂iε , ŷε , p̂iε) are solutions of⎧⎪⎪⎨⎪⎪⎩
∂�̂iε

∂t
−��̂iε + a�̂iε = − 1

Ni
ρ̂ε1Oi in Q,

�̂ε = 0 on�,
�̂ε(0, .) = 0 in�,

(92)

⎧⎪⎪⎨⎪⎪⎩
∂ ŷε
∂t

−�ŷε + aŷε = hε1ω − 1
N1

p̂1ε1O1 − 1
N2

p̂2ε1O2 in Q,

ŷε = 0 on�,
ŷε(0, .) = y0 in�

(93)
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and ⎧⎪⎨⎪⎩
−∂ p̂iε
∂t

−�p̂iε + ap̂iε = αi(ŷε − zi,d)1Od in Q,
p̂iε = 0 on�,
p̂iε(T, .) = 0 in�.

(94)

Step 2. We give estimates on ŷε , p̂1ε , p̂2ε , ĥε independent on ε.
If we multiply the first equation of (93) by ρε solution of (91) and the first equation of (94) by

�iε , i = 1, 2 solution of (92) and integrate by parts over Q and use (90), we obtain that

−
2∑

i=1

1
Ni

∫ T

0

∫
Oi

p̂iερ̂ε dx dt + ‖ĥε‖2L2(ωT)

= −1
ε
‖ŷε(T, ·)‖2L2(�) −

∫
�

y0ρ̂ε(0, x) dx +
2∑

i=1
αi

∫
OT

d

ŷε�̂iε dx dt (95)

and

− 1
N1

∫ T

0

∫
O1

p̂1ερ̂ε dx dt = α1

∫
OT

d

ŷε�̂1ε dx dt − α1

∫
OT

d

z1,d�̂1ε dx dt, (96a)

− 1
N2

∫ T

0

∫
O2

p̂2ερ̂ε dx dt = α2

∫
OT

d

ŷε�̂2ε dx dt − α2

∫
OT

d

z2,d�̂2ε dx dt. (96b)

Adding (96a) to (96b), then combining the result with (95), we deduce that

‖ĥε‖2L2(ωT)
+ 1
ε
‖ŷε(T, ·)‖2L2(�) =

2∑
i=1

αi

∫
OT

d

zi,d�̂iε dx dt −
∫
�

y0ρ̂ε(0, x) dx,

which using the Cauchy–Schwarz inequality and the fact that 1
θ
zi,d ∈ L2(OT

d ) gives

‖ĥε‖2L2(ωT)
+ 1
ε
‖ŷε(T, ·)‖2L2(�) ≤

2∑
i=1

αi

∥∥∥∥ 1θ zi,d
∥∥∥∥
L2(OT

d )

∥∥∥θ�̂iε

∥∥∥
L2(Q)

+ ‖y0‖L2(�)‖ρ̂ε(0, .)‖L2(�).

This implies that

‖ĥε‖2L2(ωT)
+ 1
ε
‖ŷε(T, ·)‖2L2(�) ≤

( 2∑
i=1

α2i

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)1/2

×
( 2∑

i=1

∥∥∥θ�̂iε

∥∥∥2
L2(Q)

+ ‖ρ̂ε(0, .)‖2L2(�)
)1/2

. (97)

From which we deduce that

‖ĥε‖2L2(ωT)
≤
( 2∑

i=1
α2i

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)1/2
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×
( 2∑

i=1

∥∥∥θ�̂iε

∥∥∥2
L2(Q)

+ ‖ρ̂ε(0, .)‖2L2(�)
)1/2

. (98)

Using the observability inequality (68) to ρε and�iε , i = 1, 2 solutions of (91) and (92), we get

2∑
i=1

∫
Q
θ2|�̂iε|2 dx dt + ‖ρ̂ε(0, .)‖2L2(�) ≤ C

∫
ωT

|ρ̂ε|2 dx dt, (99)

for some C = C(‖a‖∞, τ0, τ1, d0,T) > 0. Therefore combining (98) with (99), then using the fact
that (90) holds true, we have that there exists a constant C = C(‖a‖∞, τ0, τ1, d0,T) > 0 such that

‖ĥε‖2L2(ωT)
≤ C

( 2∑
i=1

α2i

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)1/2

‖hε‖L2(ωT).

Hence, we deduce that there exists C = C(‖a‖∞, τ0, τ1, d0,T) > 0 such that

‖ĥε‖L2(ωT) ≤ C

( 2∑
i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)1/2

, (100)

and it follows from (90) that

‖ρ̂ε‖L2(ωT) ≤ C(‖a‖∞, τ0, τ1, d0,T)

( 2∑
i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)1/2

. (101)

Using again (97) we have

1
ε
‖ŷε(T, ·)‖2L2(�) ≤

( 2∑
i=1

α2i

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)1/2

×
( 2∑

i=1

∥∥∥θ�̂iε

∥∥∥2
L2(Q)

+ ‖ρ̂ε(0, .)‖2L2(�)
)1/2

,

which combining with (99) and (101) gives

‖ŷε(T, ·)‖L2(�) ≤ C(‖a‖∞, τ0, τ1, d0,T)
√
ε

( 2∑
i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)1/2

. (102)

In view of (27), (40) and (100), we have that

‖v̂iε‖L2(OT
i )

=
∥∥∥∥− 1

Ni
p̂iε

∥∥∥∥
L2(OT

i )

≤ C(‖a‖∞,T,α1,α2,N1,N2)

( 2∑
i=1

‖zi,d‖L2(OT
d )

+ ‖ĥε‖L2(ωT) + ‖y0‖L2(�)
)

≤ C

( 2∑
i=1

‖zi,d‖L2(OT
d )

+
2∑

i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥
L2(OT

d )

+ ‖y0‖L2(�)
)
,
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where C = C(‖a‖∞,α1,α2,N1,N2, τ0, τ1, d0,T) > 0. Hence, for i = 1, 2, we have that∥∥∥∥− 1
Ni

p̂iε

∥∥∥∥
L2(OT

i )

≤ C

( 2∑
i=1

‖zi,d‖L2(OT
d )

+
2∑

i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥
L2(OT

d )

+ ‖y0‖L2(�)
)
, (103)

where C = C(‖a‖∞,α1,α2,N1,N2, τ0, τ1, d0,T) > 0. Using (103), (100), (101), (93), (94), (92), we
prove that there exists C = C(‖a‖∞,α1,α2,N1,N2, τ0, τ1, d0,T) > 0 such that

‖ŷε‖L2((0,T);H1
0(�))

≤ C

(
‖y0‖L2(�) +

2∑
i=1

‖zi,d‖L2(OT
d )

+
2∑

i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥
L2(OT

d )

)
, (104a)

‖p̂iε‖L2((0,T);H1
0(�))

≤ C

(
‖y0‖L2(�) +

2∑
i=1

‖zi,d‖L2(OT
d )

+
2∑

i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥
L2(OT

d )

)
. (104b)

Note that (104b) is valid for i = 1, 2.
Step3. We study the convergence when ε → 0 to the sequences ĥε , ŷε , p̂iε , i = 1, 2 �̂iε , i = 1, 2

and ρ̂ε .
In view of (100), (103), (104a) and (102), we can extract subsequences still denoted by ĥε , ŷε and

p̂iε such that when ε → 0, we have

ĥε ⇀ ĥ weakly in L2(ωT), (105a)

ŷε ⇀ ŷ weakly in L2((0,T);H1
0(�)), (105b)

p̂iε ⇀ p̂i weakly in L2((0,T);H1
0(�)), (105c)

ŷε(T, .) → 0 strongly in L2(�). (105d)

From (103) and (105c), we obtain that

− 1
Ni

p̂iε ⇀ v̂i = − p̂i
Ni

inOT
i , i = 1, 2. (106)

Moreover, using the weak lower semi-continuity of the norm, we deduce from (105c), (106) and (103)
that

‖v̂i‖L2(OT
i )

≤ C

(
‖y0‖L2(�) +

2∑
i=1

‖zi,d‖L2(OT
d )

+
2∑

i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥
L2(OT

d )

)
, (107)

where C = C(‖a‖∞,α1,α2,N1,N2, τ0, τ1, d0,T) > 0.
LetD(Q) be the set of infinitely continuously differentiable functions with compact support onQ.

If we multiply the first equation in (93) by� ∈ D(Q) and the first equation in (94) by ξi ∈ D(Q), i =
1, 2, and integrate by parts over Q and then take the limit when ε → 0 while using (105a), we,
respectively, deduce that

∫
Q
ŷ
(

−∂�
∂t

−��+ a�
)

dx dt = −
2∑

i=1

1
Ni

∫
OT

i

p̂i� dx dt +
∫
ωT

ĥ� dx dt,

and ∫
Q
p̂i
(
∂ξi

∂t
−�ξi + aξi

)
dx dt = αi

∫
Q
(ŷ − zi,d)1Odξi dx dt, i = 1, 2,
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which after an integration by parts over Q, gives, respectively∫
Q

(
∂ ŷ
∂t

−�ŷ + aŷ
)
� dx dt = −

2∑
i=1

1
Ni

∫
OT

i

p̂i� dx dt +
∫
ωT

ĥ� dx dt, for every� ∈ D(Q),

and∫
Q

(
−∂ p̂i
∂t

−�p̂i + ap̂i
)
ξi dx dt = αi

∫
Q
(ŷ − zi,d)1Odξi dx dt, for every ξi ∈ D(Q), i = 1, 2.

Hence, we deduce that

∂ ŷ
∂t

−�ŷ + aŷ =
2∑

i=1

1
Ni

p̂i1Oi + ĥ1ω in Q, (108a)

− ∂ p̂i
∂t

−�p̂i + ap̂i = αi(ŷ − zi,d)1Od in Q, i = 1, 2. (108b)

Observing that ŷ, p̂1, p̂2 ∈ L2((0,T);H1
0(�)) and

∂ ŷ
∂t ,

∂ p̂1
∂t and ∂ p̂2

∂t belong to L2((0,T);H−1(�)) we
deduce that ŷ(0), ŷ(T), p̂1(T) and p̂2(T) exists in L2(�). The traces of ŷ(t), p̂1(t) and p̂2(t) exist in
L2(�) for almost every t ∈ (0,T). Therefore passing to the limit in the second and third equations
of (93) and (94), we obtained from (105b) and (105c) that

ŷ = 0 on�, (109a)

p̂i = 0 on�, i = 1, 2, (109b)

p̂i(T, .) = 0 in�, i = 1, 2, (109c)

ŷ(0, .) = y0 in�; (109d)

and it follows from (102) that

ỹ(T, .) = 0 in�. (110)

Thus ŷ = ŷ(t, x; ĥ, v̂1, v̂2)) and p̂i = p̂i(ĥ), i = 1, 2 are solutions of (86) and (87).
If we apply the Carleman inequality (68) to ρ̂ε and �̂iε , i = 1, 2, we deduce that there exists C =

C(‖a‖∞, τ0, τ1, d0,T) > 0 such that∫
Q

1

 2 |ρ̂ε|2 dx dt +

2∑
i=1

∫
Q
θ2|�̂i,ε|2 dx dt ≤

∫
ωT

|ρ̂ε|2 dx dt

≤ C

( 2∑
i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)
,

because (101) holds true. Hence in view of the definitions of
 and θ given by (81) and (84), it can
be readily seen that there exists a constant C> 0 such that

θ2 ≥ C in Q and
1

 2 ≥ C in Q (111)

and therefore we can obtain∥∥∥�̂iε

∥∥∥2
L2(Q)

+ ∥∥ρ̂ε∥∥2L2(Q) ≤ C

( 2∑
i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)
, (112)
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where C = C(‖a‖∞, τ0, τ1, d0,T) > 0. Using (92) and the inequality (112), we obtain

‖ρ̂ε‖L2(Q) ≤ C

( 2∑
i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)
, (113a)

‖�̂iε‖L2((0,T);H1
0(�))

≤ C

( 2∑
i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)
, (113b)

where C = C(‖a‖∞, τ0, τ1, d0,T) > 0. In view of (113a), we can extract subsequences still denoted
by ρ̂ε and �̂iε such that when ε → 0, we obtain

ρ̂ε ⇀ ρ̂ weakly in L2(Q), (114a)

�̂iε ⇀ �̂i weakly in L2((0,T);H1
0(�)). (114b)

From (90), (105a) and (114a), we have (12). Proceeding as for convergence of ŷε in pages 23 and 24
while passing to the limit in (92), we prove using the convergence (114b) that �̂i, i = 1, 2 satisfies (14).
Passing to the limit in (91) while using (114a), we prove that ρ̂ satisfies (13).

It then follows from (106), (108a), (109a) and (110) that ĥ, ŷ, p̂1 and p̂2 solve the null controllability
problem (86)–(87) and (7). Finally, using the weak-lower semi-continuity of the norm and (105a), we
deduce from (100) the estimate (15).

3. The semi-linear case

Now to prove the hierarchic control of the semi-linear system (1) is equivalent to prove that
Theorem 1.2 holds true. We thus need to solve Problem 1.1 and Problem 1.2. To this end, we
rewrite (1) as follows

⎧⎪⎨⎪⎩
∂y
∂t

−�y + f (y)1�\ω = v11O1 + v21O2 + h1ω in Q,
y = 0 on�,
y(0, .) = y0 in�.

(115)

Then h is a control of system (115) if and only if k = f (y)+ h is a control of system (1). By writing (1)
in the form (115), we bring the nonlinearity in a bounded sub-domain of � according to hypothe-
sis (3). This fact is important to obtain the compactness properties required to apply the fixed point
argument for dealing the nonlinear case.

Now, we will obtain an optimality system that characterizes any Nash quasi-equilibrium.

3.1. Characterization of Nash quasi-equilibrium

Here, we solve Problem 1.1 associated to (115). For any h ∈ L2(ωT), as the system (115) is nonlinear,
the cost functions J1 and J2 are not convex in general. We consider a weaker concept of equilibrium
and now, we look for the Nash quasi-equilibrium v̂1 = v̂1(h) ∈ L2(OT

1 ) and v̂2 = v̂2(h) ∈ L2(OT
2 ).

According to Definition 1.1, a pair (v̂1, v̂2) is a Nash quasi-equilibrium of (115) and (4) associated
to h ∈ L2(ωT) if (8) and (9) hold. This means that

αi

∫
OT

d

(ŷ − zi,d)Zi dx dt + Ni

∫
OT

i

v̂ivi dx dt = 0, for every vi ∈ L2(OT
i ), (116)
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where Zi is solution of ⎧⎪⎨⎪⎩
∂Zi
∂t

−�Zi + f ′(ŷ)1�\ωZi = vi1Oi in Q,
Zi = 0 on�,
Zi(0, .) = 0 in�.

(117)

In order to interpret (116), we consider the adjoint state p̂i ∈ L2((0,T);H1
0(�)) ∩ C([0,T]; L2(�)),

i = 1, 2 solution of ⎧⎪⎨⎪⎩
−∂ p̂i
∂t

−�p̂i + f ′(ŷ)1�\ωp̂i = αi(ŷ − zi,d)1Od in Q,
p̂i = 0 on�,
p̂i(T, .) = 0 in�.

If we multiply the first equation in (117) by p̂i and integrate by parts over Q, we obtain that

αi

∫
OT

d

Zi(ŷ − zi,d) dx dt =
∫
OT

i

vip̂i dx dt = 0, for every vi ∈ L2(OT
i ),

which combining with (116) gives

v̂i = − 1
Ni

p̂i inOT
i , i = 1, 2.

We thus have proved the following results:

Proposition 3.1: Let h ∈ L2(ωT). Then, the pair (v̂1, v̂2) is a Nash quasi-equilibrium for functionals
Ji, i = 1, 2 given by (4) if

v̂i = − 1
Ni

p̂i inOT
i , i = 1, 2, (118)

where (ŷ, p̂i) is solution of the following systems⎧⎪⎪⎨⎪⎪⎩
∂ ŷ
∂t

−�ŷ + 1�\ωf (ŷ) = h1ω − 1
N1

p̂11O1 − 1
N2

p̂21O2 in Q,

ŷ = 0 on�,
ŷ(0, .) = y0 in�

(119)

and ⎧⎪⎨⎪⎩
−∂ p̂i
∂t

−�p̂i + f ′(ŷ)1�\ωp̂i = αi(ŷ − zi,d)1Od in Q,
p̂i = 0 on�,
p̂i(T, .) = 0 in�.

(120)

3.2. Proof of Theorem 1.2

To complete the proof of Theorem 1.2, we will solve Problem 1.2 associated to (119)–(120). We
are interested in proving that, there exists a control ĥ ∈ L2(ωT) such that if (ŷ, p̂i) is solution
of (119)–(120), then (7) is satisfies.
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We observe that, for any ŷ ∈ L2((0,T); L2(� \ ω)), we have
f (ŷ)− f (0) = a(ŷ)ŷ,

where a(ŷ) is defined by

a(ŷ) =
∫ 1

0
f ′(σ ŷ) dσ . (121)

Now, for any z ∈ L2((0,T); L2(� \ ω)), we consider the linearized system⎧⎪⎪⎨⎪⎪⎩
∂ ŷ
∂t

−�ŷ + a(z)1�\ωŷ = h1ω − 1
N1

p̂11O1 − 1
N2

p̂21O2 in Q,

ŷ = 0 on�,
ŷ(0, .) = y0 in�,

(122)

where p̂i, i = 1, 2 is solution of⎧⎪⎨⎪⎩
−∂ p̂i
∂t

−�p̂i + c(z)1�\ωp̂i = αi(ŷ − zi,d)1Od in Q,
p̂i = 0 on�,
p̂i(T, .) = 0 in�,

(123)

with

c(z) = f ′(z), ∀ z ∈ L2((0,T); L2(� \ ω)).
Since f ∈ W1,∞(R), we have that

a and c belong to L∞((0,T)× (� \ ω)). (124)

Now, we want to prove that systems (122)–(123) is null controllable. For this, we consider their
following adjoint systems:⎧⎪⎨⎪⎩

−∂ρ
∂t

−�ρ + a(z)1�\ωρ = α1�11O1,d + α2�21O2,d in Q,
ρ = 0 on�,
ρ(T, ·) = ρT in�,

(125)

and for i = 1, 2, ⎧⎪⎨⎪⎩
∂�i

∂t
−��i + c(z)1�\ω�i = − 1

Ni
ρ1Oi in Q,

�i = 0 on�,
�i(0, .) = 0 in�.

(126)

Proceeding as in Section 2.2, we show that the observability inequality associated with sys-
tems (125)–(126) is given by

‖ρ(0, ·)‖2L2(�) +
∫
Q

1

 2 |ρ|2 dx dt +

2∑
i=1

∫
Q
θ2|�i|2 dx dt ≤ C

∫
ωT

|ρ|2 dx dt, (127)

whereC = C(‖a‖∞, ‖c‖∞, τ0, τ1, d0,T) > 0, theweight functions
 and θ are given by (81) and (84),
respectively.

Now, using this observability inequality and proceeding as in the Section 2.3, we show that, for
any z ∈ L2((0,T); L2(� \ ω)), there exists a control ĥ = ĥ(z) ∈ L2(ωT) such that if (ŷ, p̂i) is solution
of (122)–(123) then (7) is satisfied. Moreover, ĥ satisfies (15).



APPLICABLE ANALYSIS 27

We now consider a nonlinear map

S : L2((0,T); L2(� \ ω)) → L2((0,T); L2(� \ ω))

such that, for every z ∈ L2((0,T); L2(� \ ω)), S(z) = ŷ where (ŷ, p̂i) are solutions of (122)–(123).
Proving that Shas a fixed point ŷ ∈ L2((0,T); L2(� \ ω))will allows us to say that ŷ is solution of (115)
and consequently, will be sufficient to finish the proof of Theorem1.2. To this end,we use the Schauder
fixed-point theorem.

Proposition 3.2: (1) S is continuous,
(2) S is compact,
(3) The range of S is bounded; i.e.

∃M > 0 : ‖S(z)‖L2((0,T);L2(�\ω)) ≤ M, ∀ z ∈ L2((0,T); L2(� \ ω)).

Proof: Throughout the rest of this work, the expression ‖ · ‖�\ω will denote ‖ · ‖L∞((0,T)×(�\ω)).
(1) S is continuous.
Let (zn) be a sequence such that zn → z strongly in L2((0,T); L2(� \ ω)). Then we can extract a

subsequence of (zn) denoted (znk) such that

znk → z almost everywhere (a.e.) in (0,T)× (� \ ω).

Therefore, f being a function of class C1, the functions a and c are continuous and we have

a(znk) → a(z) a.e. in (0,T)× (� \ ω),
c(znk) → c(z) a.e. in (0,T)× (� \ ω).

It then follows from (124) and the Lebesgue dominated convergence theorem that

a(znk) → a(z) strongly in L2((0,T)× (� \ ω)), (128a)

c(znk) → c(z) strongly in L2((0,T)× (� \ ω)). (128b)

As Theorem 1.1 holds for every z ∈ L2((0,T); L2(� \ ω)), it also holds for znk ∈ L2((0,T); L2(� \
ω)). Thus the control ĥnk = ĥ(znk) is such that ŷnk = ŷ(znk) satisfies⎧⎪⎨⎪⎩

∂ ŷnk
∂t

−�ŷnk + a(znk)1�\ωŷnk = τnk in Q,
ŷnk = 0 on�,
ŷnk(0, .) = y0 in�,

(129)

where τnk = ĥnk1ω − 1
N1
p̂1,nk1O1 − 1

N2
p̂2,nk1O2 and p̂i,nk , i = 1, 2 is solution of

⎧⎪⎨⎪⎩
−∂ p̂i,nk

∂t
−�p̂i,nk + c(znk)1�\ωp̂i,nk = αi(ŷ − zi,d)1Od in Q,

p̂i,nk = 0 on�,
p̂i,nk(T, .) = 0 in�,

(130)

ŷnk(T, .) = 0 in� (131)
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and

v̂i,nk = − p̂i,nk
Ni

inOT
i , i = 1, 2. (132)

Moreover,

ĥnk = ρ̂nk in ωT , (133)

with ρ̂nk solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∂ρ̂nk
∂t

−�ρ̂nk + a(znk)1�\ωρ̂nk =
2∑

i=1
αi�̂i,nk1Od in Q,

ρ̂nk = 0 on�,
ρ̂nk(T, ·) = ρT in�,

(134)

and �̂i,nk , i = 1, 2, solution of⎧⎪⎪⎨⎪⎪⎩
∂�̂i,nk
∂t

−��̂i,nk + c(znk)1�\ω�̂i,nk = − 1
Ni
ρ̂nk1Oi in Q,

�̂i,nk = 0 on�,
�̂i,nk(0, .) = 0 in�.

(135)

In addition, ĥnk and v̂i,nk , i = 1, 2 verify (15) and (107), respectively. This means that there exists a
positive constant C1 = C(‖a‖�\ω, ‖c‖�\ω,T, τ0, τ1, d0) > 0 and C2 = C(‖a‖�\ω, ‖c‖�\ω,T,α1,α2,
N1,N2, τ0, τ1, d0) > 0 such that

‖ĥnk‖L2(ωT) ≤ C1

( 2∑
i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)1/2

(136)

and for i = 1, 2,

‖v̂i,nk‖L2(OT
i )

≤ C2

(
‖y0‖L2(�) +

2∑
i=1

‖zi,d‖L2(OT
d )

+
2∑

i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥
L2(OT

d )

)
. (137)

We set

W(Q) =
{
ρ ∈ L2((0,T);H1

0(�)),
∂ρ

∂t
∈ L2((0,T);H−1(�))

}
. (138)

Then observing that (ŷnk) and (p̂ink), i = 1, 2 are solutions of (129) and (130), respectively,
using (124), (136) and (137), we prove that there exists C = C(‖a‖�\ω, ‖c‖�\ω,T,α1,α2,N1,N2, τ0,
τ1, d0) > 0 such that

‖ŷnk‖W(Q) ≤ C

(
‖y0‖L2(�) +

2∑
i=1

‖zi,d‖L2(OT
d )

+
2∑

i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥
L2(OT

d )

)
, (139a)

‖p̂i,nk‖W(Q) ≤ C

(
‖y0‖L2(�) +

2∑
i=1

‖zi,d‖L2(OT
d )

+
2∑

i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥
L2(OT

d )

)
. (139b)

Thus, there exist ĥ ∈ L2(ωT), v̂i ∈ L2(OT
i ), and ŷ, p̂i, i = 1, 2 inW(Q) such that

ĥnk ⇀ ĥ weakly in L2(ωT), (140a)
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v̂i,nk ⇀ v̂i weakly in L2(OT
i ), i = 1, 2, (140b)

ŷnk ⇀ ŷ weakly inW(Q), (140c)

p̂i,nk ⇀ p̂i weakly inW(Q), i = 1, 2. (140d)

It follows from Aubin-Lions Lemma that

ŷnk → ŷ strongly in L2((0,T)× (� \ ω)), (141a)

p̂i,nk ⇀ p̂i strongly in L2((0,T)× (� \ ω)), i = 1, 2. (141b)

Therefore, proceeding as for the convergence of (ŷε, p̂i,ε) in Pages 22–24, we prove by passing to the
limit in systems (129)–(130) while using (140a)–(140d), (128a) and (141a)–(141b) that, (ĥ, ŷ, p̂1, p̂2)
satisfies the null controllability problem (86)–(87) and (7).

Applying (68) to (ρ̂nk) and (�̂ink), i = 1, 2 and using (111), we deduce that

∫
Q

|ρ̂nk |2 dx dt +
2∑

i=1

∫
Q

|�̂i,ε|2 dx dt ≤
∫
ωT

|ρ̂nk |2 dx dt

≤ C

( 2∑
i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥2
L2(OT

d )

+ ‖y0‖2L2(�)
)
,

where C = C(‖a‖�\ω, ‖c‖�\ω,T, τ0, τ1, d0) > 0. This implies that

ρ̂nk ⇀ ρ̂ weakly in L2(Q),

�̂nk ⇀ �̂i weakly in L2((0,T);H1
0(�)).

(142)

Therefore proceeding as for the convergence of �̂iε , i = 1, 2 and ρ̂ε pages 24–25 while passing to the
limit in (134) and (135), we prove using (128a) and (142) that ρ̂ and �̂i, i = 1, 2 satisfy (13) and (14),
respectively. Moreover, ĥ satisfies (12).

(2) S is compact.
The operator is compact. To prove that we proceed exactly as in [25], using on the one hand the fact

that ŷ ∈ W((0,T)× (� \ ω)) and on the other hand the compact embedding ofW((0,T)× (� \ ω))
into L2((0,T); L2(� \ ω)).

(3) The range of S is bounded.
Let z ∈ L2((0,T); L2(� \ ω)). Since S(z) = ŷ(z) is solution of (122) with ĥ satisfying (15) and

v̂i, i = 1, 2 verify (106) and (107), we prove that there exists
C = C(‖a‖�\ω, ‖c‖�\ω,T,α1,α2,N1,N2,

τ0, τ1, d0) > 0 such that

‖ŷ‖L2((0,T);L2(�\ω)) ≤ C

(
‖y0‖L2(�) +

2∑
i=1

‖zi,d‖L2(OT
d )

+
2∑

i=1

∥∥∥∥ 1θ zi,d
∥∥∥∥
L2(OT

d )

)
.

It then follows from Proposition 3.2 that the operator S has a fixed point ŷ. Since k̂ = f (ŷ)+ ĥ, then
the proof of Theorem 1.2 is complete. �

3.3. Equilibria and quasi-equilibria

In this section, we will prove Proposition 1.1. As we said at the beginning of the Section 3, solving sys-
tem (1) with control k̂ = f (ŷ)+ ĥ is equivalent to solving system (115) with control ĥ. By writing (1)
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in the form (115) is very important because, we bring the nonlinearity in a bounded sub-domain of
� according to hypothesis (3). So, in this section, we will consider the system (115).

Let us suppose that the nonlinearity f satisfies (2) and f ∈ W2,∞(R), let ĥ ∈ L2(ωT) be given and
let (v̂1, v̂2) be the associated Nash quasi-equilibria. Let also w1,w2 ∈ L2(OT

1 ). Our aim is to estimate
the second derivative D2

1J1(h; v̂1, v̂2) · (w1,w1).
For any s ∈ R, let us denote by ŷs the solution of the following system

⎧⎪⎨⎪⎩
∂ ŷs

∂t
−�ŷs + f (ŷs)1�\ω = (v̂1 + sw1)1O1 + v̂21O2 + ĥ1ω in Q,

ŷs = 0 on�,
ŷs(0, .) = y0 in�

(143)

and let us set ŷ := ŷs|s=0.
Now, we have

D1J1(ĥ; v̂1 + sw1, v̂2) · w2 − D1J1(ĥ; v̂1, v̂2) · w2

= sN1

∫
OT

1

w1w2 dx dt + α1

∫
OT

d

(ŷs − z1,d)zs dx dt − α1

∫
OT

d

(ŷ − z1,d)z dx dt, (144)

where zs is the derivative of the state ŷs with respect to v̂1 + sw1 in the direction w2, i.e. the solution
to ⎧⎪⎨⎪⎩

∂zs

∂t
−�zs + f ′(ŷs)1�\ωzs = w11O1 in Q,

zs = 0 on�,
zs(0, .) = 0 in�.

(145)

We will also use the notation z := zs|s=0.
Let us introduce the adjoint of (145)

⎧⎪⎨⎪⎩
−∂ p̂

s

∂t
−�p̂s + f ′(ŷs)1�\ωp̂s = α1(ŷs − z1,d)1Od in Q,

p̂s = 0 on�,
p̂s(T, .) = 0 in�

(146)

and let us use the notation p̂ := p̂s|s=0.
Mutiplying the first equation of (145) by p̂s solution of (146) and integrating by part over Q, we

obtain

α1

∫
Q
(ŷs − z1,d)1Odz

s dx dt =
∫
Q
w2p̂s1O1 dx dt. (147)

From (144) and (147), we have

D1J1(h; v̂1 + sw1, v̂2) · w2 − D1J1(h; v̂1, v̂2) · w2 = sN1

∫
OT

1

w1w2 dx dt

+
∫
OT

1

(p̂s − p̂)w2 dx dt. (148)
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Notice that

− ∂

∂t
(p̂s − p̂)−�(p̂s − p̂)+ [

f ′(ŷs)− f ′(ŷ)
]
1�\ωp̂s + f ′(ŷ)1�\ω(p̂s − p̂) = α1(ŷs − ŷ)1Od

and
∂

∂t
(ŷs − ŷ)−�(ŷs − ŷ)+ [

f ′(ŷs)− f ′(ŷ)
]
1�\ω = sw11O1 .

Consequently, the following limits

η = lim
s→0

1
s
(p̂s − p̂) and φ = lim

s→0

1
s
(ŷs − ŷ)

exist and satisfy ⎧⎪⎨⎪⎩
−∂η
∂t

−�η + f ′(ŷ)1�\ωη + f ′′(ŷ)1�\ωφp̂ = α1φ1Od in Q,
η = 0 on�,
η(T, .) = 0 in�

(149)

and ⎧⎪⎨⎪⎩
∂φ

∂t
−�φ + f ′(ŷ)1�\ωφ = w11O1 in Q,

φ = 0 on�,
φ(0, .) = 0 in�.

(150)

Thus, from (148) and (149)–(150), we deduce that

D2
1J1(ĥ; v̂1, v̂2) · (w1,w2) =

∫
OT

1

ηw2 dx dt + N1

∫
OT

1

w1w2 dx dt. (151)

In particular, for w2 = w1, we have

D2
1J1(ĥ; v̂1, v̂2) · (w1,w1) =

∫
OT

1

ηw1 dx dt + N1

∫
OT

1

|w1|2 dx dt. (152)

Let us show that, for some constant C1 > 0 independent of ĥ, η, φ, w1, one has∣∣∣∣∣
∫
OT

1

ηw1 dx dt

∣∣∣∣∣ ≤ C1(1 + ‖ĥ‖L2(ωT))‖w1‖L2(OT
1 )
. (153)

Indeed, given w1 ∈ L2(OT
1 ) and since f ′ ∈ L∞((0,T)× (� \ ω)), from the energy estimate, we have

‖φ‖2L2(Q) + ‖∇φ‖2L2(Q) ≤ C‖w1‖2L2(OT
1 )
. (154)

Using systems (149) and (150), we have∫
OT

1

ηw1 dx dt =
∫
Q
η

(
∂φ

∂t
−�φ + f ′(ŷ)1�\ωφ

)
dx dt

=
∫
Q
φ

(
−∂η
∂t

−�η + f ′(ŷ)1�\ωη
)

dx dt

=
∫
Q
φ
(−f ′′(ŷ)1�\ωφp̂ + α1φ1Od

)
dx dt
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=
∫
Q

−f ′′(ŷ)1�\ω|φ|2p̂ dx dt +
∫
Q
α1|φ|21Od dx dt. (155)

Applying Hölder inequality in the above expression and using the fact that f ′′ ∈ L∞((0,T)× (� \
ω)), we have∣∣∣∣∣

∫
OT

1

ηw1 dx dt

∣∣∣∣∣ ≤ ‖f ′′‖�\ω‖φ‖2L2r′ ((0,T);L2s′ (�\ω))‖p̂‖Lr((0,T);Ls(�\ω)) + α1‖φ‖2L2(OT
d )
, (156)

where r′ and s′ are the conjugate of r and s, respectively. To bound the right-hand side of this latter
inequality, the idea is to find r and s such that

p̂ ∈ Lr((0,T); Ls(� \ ω)), φ ∈ L2r
′
((0,T); L2s

′
(� \ ω)).

First, we have that φ ∈ L2((0,T);H2(� \ ω)) ∩ L∞((0,T);H1(� \ ω)). It is reasonable to look for
which values of d and b the following embedding holds:

L2((0,T);H2(� \ ω)) ∩ L∞((0,T);H1(� \ ω)) ↪→ Ld((0,T); Lb(� \ ω)). (157)

Using interpolation results, we deduce that

1
d

= θ

2
, 0 < θ < 1. (158)

From Sobolev embedding results, we have

H2(� \ ω) ↪→ L
2n
n−4 (� \ ω), (159a)

H1(� \ ω) ↪→ L
2n
n−2 (� \ ω). (159b)

Then, the space Lb(� \ ω) is an intermediate space with respect to (159a) and (159b) if

1
b

= (n − 4)θ
2n

+ (n − 2)(1 − θ)

2n
, 0 < θ < 1. (160)

Taking d = 2r′ and b = 2s′, it follows that appropriate values of r and s are

r = d
d − 2

and s = dn
2(d + 2)

.

On the other hand, since ĥ ∈ L2(ωT), v̂i ∈ L2(OT
i ) and y0 ∈ L2(�), we have that

ŷ ∈ L2((0,T);H1(� \ ω)) ∩ L∞((0,T); L2(� \ ω)) ↪→ Ld̄((0,T); Lb̄(� \ ω)). (161)

Using the interpolation argument, we obtain that

b̄ = 2d̄n
d̄n − 4

.

From parabolic regularity, we have

φ ∈ Ld̄((0,T);W2,b̄(� \ ω)) ↪→ Ld̄
(
(0,T); L

nb̄
n−2b̄ (� \ ω)

)
= Ld̄

(
(0,T); L

2d̄n
d̄(n−4)−4 (� \ ω)

)
.

(162)

Taking, d̄ = r, it follows that φ ∈ Ld̄((0,T); L
2 dn

d(n−8)+8 (� \ ω)) and, in order to have φ ∈
Lr((0,T); Ls(� \ ω)), we need

dn
2(d + 2)

≤ 2dn
d(n − 8)+ 8

,

which is true if and only if n ≤ 12.
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Now, using (154) and the standard energy estimate of systems (143) for s = 0 and (146) for s = 0,
the term (155) becomes ∣∣∣∣∣

∫
OT

1

ηw1 dx dt

∣∣∣∣∣ ≤ C1(1 + ‖ĥ‖L2(ωT)), (163)

where C1 is a positive constant independent of N1 and N2.
Combining (152) and (163), it follows that

D2
1J1(ĥ; v̂1, v̂2) · (w1,w1) ≥

[
N1 − C1(1 + ‖ĥ‖L2(ωT))

]
‖w1‖2L2(OT

1 )
, ∀ w1 ∈ L2(OT

1 ).

In a similar way, we can prove that there exists a positive constant C2 independent ofN1 andN2 such
that

D2
2J2(ĥ; v̂1, v̂2) · (w2,w2) ≥

[
N2 − C2(1 + ‖ĥ‖L2(ωT))

]
‖w2‖2L2(OT

1 )
, ∀ w2 ∈ L2(OT

2 ).

Now, taking Ni such that Ni > Ci(1 + ‖ĥ‖L2(ωT)), then the functionals Ji, i = 1, 2 given by (4) are
convex and therefore the pair (v̂1, v̂2) is aNash equilibrium in the sense of (5)–(6). Since k̂ = f (ŷ)+ ĥ,
then the proof of Proposition 1.1 is complete.

4. Conclusion

In this paper, we proved that system (1) is Stackelberg–Nash null controllable in an unbounded
domain. The results have been obtained under the following assumptions: Oi ∩ ω = ∅, the set
(� \ ω) is bounded andO1,d = O2,d.

Let us mention that, in the linear case, the quadratic functionals are convex and then we look for
a Nash equilibrium. But, in the semi-linear case, we don’t have the convexity of those functionals in
general. That is the reason why we redefine the concept of equilibrium and then, we now look for a
Nash-quasi equilibrium. Next, we show that under certain conditions, there is a equivalence between
Nash equilibrium and quasi-Nash equilibrium.
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